List of Chapters
List of Chapters
- Chapter 1: Introduction to Proofs
- Chapter 2: Sets and Subsets
- Chapter 3: Divisors
- Chapter 4: Modular Arithmetic
- Chapter 5: Symmetries
- Chapter 6: Permutations
- Chapter 7: Matrices
- Chapter 8: Introduction to Groups
- Chapter 9: Groups of Small Size
- Chapter 10: Matrix Groups
- Chapter 11: Subgroups
- Chapter 12: Order of an Element
- Chapter 13: Cyclic Groups, Part I
- Chapter 14: Cyclic Groups, Part II
- Chapter 15: Functions
- Chapter 16: Isomorphisms
- Chapter 17: Homomorphisms, Part I
- Chapter 18: Homomorphisms, Part II
- Chapter 19: Introduction to Cosets
- Chapter 20: Lagrange’s Theorem
- Chapter 21: Multiplying / Adding Cosets
- Chapter 22: Quotient Group Examples
- Chapter 23: Quotient Group Proofs
- Chapter 24: Normal Subgroups
- Chapter 25: First Isomorphism Theorem
- Chapter 26: Introduction to Rings
- Chapter 27: Integral Domains and Fields
- Chapter 28: Polynomial Rings, Part I
- Chapter 29: Polynomial Rings, Part II
- Chapter 30: Factoring Polynomials
- Chapter 31: Ring Homomorphisms
- Chapter 32: Introduction to Quotient Rings
- Chapter 33: Quotient Ring ℤ7[x]/⟨x2 – 1⟩
- Chapter 34: Quotient Ring ℝ[x]/⟨x2 + 1⟩
- Chapter 35: F[x]/⟨g(x)⟩ Is/Isn’t a Field, Part I
- Chapter 36: Maximal Ideals
- Chapter 37: F[x]/⟨g(x)⟩ Is/Isn’t a Field, Part II