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Abstract Algebra
Day 20 Class Work Solutions

1. (a) There are lots of eggs and dozen egg cartons. If all the eggs are in cartons and all the ← This kind of carton:

cartons are full, can there be 1000 eggs? Why or why not?

Solution. No, because 12 is not a divisor of 1000.

(b) Let G be a group. If a subgroup H has 12 elements, can the group G contain 1000
elements? Why or why not?

Solution. No, because 12 is not a divisor of 1000.

2. Let H be a subgroup of a finite group G. In answering these, try to justify your claims.

(a) Suppose #G = 28 and #H = 4, where #G and #H denote the sizes of G and H, Ans: [G : H] = 7.

respectively. Find [G : H], i.e., the number of distinct left cosets of H.

Solution. All cosets of H have 4 elements, just like H. And given that the cosets of
H form a partition of G (i.e., they cover all of G without any overlap), there must be
28÷ 4 = 7 distinct cosets of H. Therefore, [G : H] = 7.

(b) Can a group with 28 elements have a subgroup of size 5? Why or why not? Give an
explanation using cosets.

Solution. No, because 5 is not a divisor of 28. See part (d) below for an explanation.

(c) Find a general formula for [G : H]. Explain your reasoning.

Solution. [G : H] = #G
#H , where #G and #H refer to the size of G and H (i.e., the

number of elements), respectively.

(d) Explain why #H is a divisor of #G.

Solution. Since all cosets of H have the same size, namely #H, and the distinct
cosets of H form a partition of G (i.e., they fill up G without any overlap), it follows
that #H is a divisor of #G. See Section 20.2 in the textbook for more details.

3. Let G be a finite group, and consider an element g ∈ G with ord(g) = 6.

(a) Let 〈g〉 = {gk | k ∈ Z} be the cyclic subgroup generated by g. Write down the distinct
elements of 〈g〉. How many elements does 〈g〉 contain?

Solution. By Theorem 13.17, 〈g〉 contains 6 distinct elements, namely

〈g〉 = {ε, g1, g2, g3, g4, g5}.

(b) Can the group G contain 34 elements? Why or why not? Ans: No. (Why not?)

Hint: Apply Problem #2(d) with H = 〈g〉.

Solution. No. With H = 〈g〉, we have #H = 6. Based on Problem #2(d), we
conclude that #G must be a multiple of 6. In particular, we have #G 6= 34.

4. Prove: Let G be a finite group and g ∈ G. Then ord(g) is a divisor of #G. Hint: See Problem #3.

Proof. Let n = ord(g). Then the cyclic subgroup 〈g〉 = {gk | k ∈ Z} contains n distinct
elements, namely 〈g〉 = {ε, g1, g2, g3, . . . , gn−1}. Since 〈g〉 is a subgroup of G, we conclude
that #〈g〉 is a divisor of #G. Thus, n = ord(g) is a divisor of #G. �

5. Suppose a group G contains 5 elements, and let g ∈ G be a non-identity element.

(a) Find ord(g). Ans: ord(g) = 5.
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(b) How many elements does the cyclic subgroup 〈g〉 contain?

(c) Explain why G is cyclic with generator g.

Solution. By the theorem in Problem #4, ord(g) is a divisor of #G = 5. Since 5 is prime,
its only positive divisors are 1 and 5. And since g 6= ε, we know that ord(g) 6= 1. Thus
we must have ord(g) = 5, which implies that the cyclic subgroup 〈g〉 contains 5 elements,
namely 〈g〉 = {ε, g1, g2, g3, g4}. Since G also has 5 elements, we have G = 〈g〉, so that G
is cyclic with generator g.

6. Repeat Problem #5 with a group G that contains 7 elements; 19 elements; 101 elements;
p elements where p is prime.

Solution. Our work in Problem #5 can be generalized by replacing 5 with any prime p.
Then we obtain the following conclusion:

Let G be a group with p elements, where p is prime. Then G is cyclic with
G = 〈g〉, where g is any non-identity element of G.

7. Consider the group D4 and its subgroup H = {ε, r180, d, d′}.

Note: You should be able to complete this problem without the table for D4.

(a) Find [D4 : H]. Ans: [D4 : H] = 2.

Solution. Since #D4 = 8 and #H = 4, we have [D4 : H] = 8÷ 4 = 2.

(b) Suppose a ∈ H. Determine the elements in the coset aH.

Solution. Since a ∈ H, we have aH = H.

(c) Same as part (b), but with a 6∈ H.

Solution. Since a 6∈ H, we have aH 6= H. There are only two cosets, and thus
aH must be the other coset. Since the distinct cosets H and aH form a partition of
D4 (i.e., they cover all of D4 without any overlap), the coset aH must contain the
remaining elements of D4 that are not in H. Therefore, aH = {r90, r270, h, v}.

8. In this problem, you’ll prove that the distinct cosets of H form a partition of G, i.e.,

• they cover all of G, and

• they do not overlap with each other.

(a) Give an example that illustrates this notion of a partition.

(b) Prove: Every element of G is contained in some coset of H. ← i.e., they cover all of G.

(c) Prove: If aH 6= bH, then aH and bH do not have any element in common. ← i.e., they don’t overlap.

Hint: Think contrapositive.

Solution. See Section 20.2 in the textbook for details.

9. Let G be a group and H and K its subgroups. Define M = {g ∈ G | g ∈ H and g ∈ K}. ← i.e., M is the intersection
of H and K.

(a) Prove: M is a subgroup of G.

(b) If #H = 21 and #K = 32, find #M . Explain your reasoning.

Solution. We’ve seen that M is a subgroup of G. In fact, M ⊆ H and M ⊆ K, so
that M is a subgroup of H and of K. Thus, #M is a divisor of both #H = 15 and
#K = 28. Since gcd(15, 28) = 1, we must have #M = 1. In other words, M = {ε}.
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10. Consider the prime number p = 3.

(a) Choose an integer a, compute ap − a, and verify that p is a divisor of ap − a.

(b) Repeat part (a) with another integer a of your choice.

(c) Repeat part (a) again, this time with a negative integer a.

11. (a) Repeat Problem #10 with prime p = 5; with prime p = 7; with prime p = 11.

(b) Repeat Problem #10 with one more prime number of your choice.

(c) What conjecture do you have?

12. Prove: Let p be a prime number. Prove that p is a divisor of ap − a for all a ∈ Z. ← This is called Fermat’s
little theorem.


