Abstract Algebra Day 20 Class Work Solutions

 (a) There are lots of eggs and dozen egg cartons. If all the eggs are in cartons and all the ← This kind of carton: cartons are full, can there be 1000 eggs? Why or why not?

Solution. No, because 12 is not a divisor of 1000.

(b) Let G be a group. If a subgroup H has 12 elements, can the group G contain 1000 elements? Why or why not?

Solution. No, because 12 is *not* a divisor of 1000.

- 2. Let H be a subgroup of a *finite* group G. In answering these, try to *justify* your claims.
 - (a) Suppose #G = 28 and #H = 4, where #G and #H denote the sizes of G and H, Ans: [G:H] = 7. respectively. Find [G:H], i.e., the number of distinct left cosets of H.

Solution. All cosets of H have 4 elements, just like H. And given that the cosets of H form a *partition* of G (i.e., they cover all of G without any overlap), there must be $28 \div 4 = 7$ distinct cosets of H. Therefore, [G : H] = 7.

(b) Can a group with 28 elements have a subgroup of size 5? Why or why not? Give an explanation using cosets.

Solution. No, because 5 is not a divisor of 28. See part (d) below for an explanation.

(c) Find a general formula for [G:H]. Explain your reasoning.

Solution. $[G:H] = \frac{\#G}{\#H}$, where #G and #H refer to the size of G and H (i.e., the number of elements), respectively.

(d) Explain why #H is a divisor of #G.

Solution. Since all cosets of H have the same size, namely #H, and the distinct cosets of H form a partition of G (i.e., they fill up G without any overlap), it follows that #H is a divisor of #G. See Section 20.2 in the textbook for more details.

- 3. Let G be a finite group, and consider an element $g \in G$ with $\operatorname{ord}(g) = 6$.
 - (a) Let $\langle g \rangle = \{g^k \mid k \in \mathbb{Z}\}$ be the cyclic subgroup generated by g. Write down the *distinct* elements of $\langle g \rangle$. How many elements does $\langle g \rangle$ contain?

Solution. By Theorem 13.17, $\langle g \rangle$ contains 6 distinct elements, namely

$$\langle g \rangle = \{ \varepsilon, g^1, g^2, g^3, g^4, g^5 \}.$$

(b) Can the group G contain 34 elements? Why or why not?

Hint: Apply Problem #2(d) with $H = \langle g \rangle$.

Solution. No. With $H = \langle g \rangle$, we have #H = 6. Based on Problem #2(d), we conclude that #G must be a multiple of 6. In particular, we have $\#G \neq 34$.

4. **Prove:** Let G be a finite group and $g \in G$. Then $\operatorname{ord}(g)$ is a divisor of #G.

PROOF. Let $n = \operatorname{ord}(g)$. Then the cyclic subgroup $\langle g \rangle = \{g^k \mid k \in \mathbb{Z}\}$ contains n distinct elements, namely $\langle g \rangle = \{\varepsilon, g^1, g^2, g^3, \ldots, g^{n-1}\}$. Since $\langle g \rangle$ is a subgroup of G, we conclude that $\#\langle g \rangle$ is a divisor of #G. Thus, $n = \operatorname{ord}(g)$ is a divisor of #G.

- 5. Suppose a group G contains 5 elements, and let $g \in G$ be a non-identity element.
 - (a) Find $\operatorname{ord}(g)$.

Ans: No. (Why not?)

Hint: See Problem #3

101 101

- (b) How many elements does the cyclic subgroup $\langle g \rangle$ contain?
- (c) Explain why G is cyclic with generator g.

Solution. By the theorem in Problem #4, $\operatorname{ord}(g)$ is a divisor of #G = 5. Since 5 is prime, its only positive divisors are 1 and 5. And since $g \neq \varepsilon$, we know that $\operatorname{ord}(g) \neq 1$. Thus we must have $\operatorname{ord}(g) = 5$, which implies that the cyclic subgroup $\langle g \rangle$ contains 5 elements, namely $\langle g \rangle = \{\varepsilon, g^1, g^2, g^3, g^4\}$. Since G also has 5 elements, we have $G = \langle g \rangle$, so that G is cyclic with generator g.

6. Repeat Problem #5 with a group G that contains 7 elements; 19 elements; 101 elements; p elements where p is prime.

Solution. Our work in Problem #5 can be generalized by replacing 5 with any prime p. Then we obtain the following conclusion:

Let G be a group with p elements, where p is prime. Then G is cyclic with $G = \langle g \rangle$, where g is any non-identity element of G.

7. Consider the group D_4 and its subgroup $H = \{\varepsilon, r_{180}, d, d'\}$.

Note: You should be able to complete this problem without the table for D_4 .

(a) Find $[D_4:H]$.

Solution. Since $\#D_4 = 8$ and #H = 4, we have $[D_4 : H] = 8 \div 4 = 2$.

(b) Suppose $a \in H$. Determine the elements in the coset aH.

Solution. Since $a \in H$, we have aH = H.

(c) Same as part (b), but with $a \notin H$.

Solution. Since $a \notin H$, we have $aH \neq H$. There are only two cosets, and thus aH must be the other coset. Since the distinct cosets H and aH form a partition of D_4 (i.e., they cover all of D_4 without any overlap), the coset aH must contain the remaining elements of D_4 that are not in H. Therefore, $aH = \{r_{90}, r_{270}, h, v\}$.

- 8. In this problem, you'll prove that the distinct cosets of H form a partition of G, i.e.,
 - they cover all of G, and
 - they do not overlap with each other.
 - (a) Give an example that illustrates this notion of a partition.
 - (b) **Prove:** Every element of G is contained in some coset of H. \leftarrow i.e., they cover all of G.
 - (c) **Prove:** If $aH \neq bH$, then aH and bH do not have any element in common. \leftarrow i.e., they don't overlap. **Hint:** Think contrapositive.

Solution. See Section 20.2 in the textbook for details.

- 9. Let G be a group and H and K its subgroups. Define $M = \{g \in G \mid g \in H \text{ and } g \in K\}$.
 - (a) **Prove:** M is a subgroup of G.
 - (b) If #H = 21 and #K = 32, find #M. Explain your reasoning.

Solution. We've seen that M is a subgroup of G. In fact, $M \subseteq H$ and $M \subseteq K$, so that M is a subgroup of H and of K. Thus, #M is a divisor of both #H = 15 and #K = 28. Since gcd(15, 28) = 1, we must have #M = 1. In other words, $M = \{\varepsilon\}$.

Ans: $[D_4 : H] = 2.$

 $\leftarrow \text{ i.e., } M \text{ is the intersection} \\ \text{ of } H \text{ and } K.$

- 10. Consider the prime number p = 3.
 - (a) Choose an integer a, compute $a^p a$, and verify that p is a divisor of $a^p a$.
 - (b) Repeat part (a) with another integer a of your choice.
 - (c) Repeat part (a) again, this time with a negative integer a.
- 11. (a) Repeat Problem #10 with prime p = 5; with prime p = 7; with prime p = 11.
 - (b) Repeat Problem #10 with one more prime number of your choice.
 - (c) What conjecture do you have?

12. **Prove:** Let p be a prime number. Prove that p is a divisor of $a^p - a$ for all $a \in \mathbb{Z}$.

← This is called *Fermat's little theorem*.