Abstract Algebra Day 20 Class Work

- (a) There are lots of eggs and dozen egg cartons. If all the eggs are in cartons and all the ← This kind of cartons cartons are full, can there be 1000 eggs? Why or why not?
 - (b) Let G be a group. If a subgroup H has 12 elements, can the group G contain 1000 elements? Why or why not?
- 2. Let H be a subgroup of a *finite* group G. In answering these, try to *justify* your claims.
 - (a) Suppose #G = 28 and #H = 4, where #G and #H denote the sizes of G and H, Ans: [G:H] = 7. respectively. Find [G:H], i.e., the number of distinct left cosets of H.
 - (b) Can a group with 28 elements have a subgroup of size 5? Why or why not? Give an explanation using cosets.
 - (c) Find a general formula for [G:H]. Explain your reasoning.
 - (d) Explain why #H is a divisor of #G.
- 3. Let G be a finite group, and consider an element $g \in G$ with $\operatorname{ord}(g) = 6$.
 - (a) Let $\langle g \rangle = \{g^k \mid k \in \mathbb{Z}\}$ be the cyclic subgroup generated by g. Write down the *distinct* elements of $\langle g \rangle$. How many elements does $\langle g \rangle$ contain?
 - (b) Can the group G contain 34 elements? Why or why not?

Hint: Apply Problem #2(d) with $H = \langle g \rangle$.

4. **Prove:** Let G be a finite group and $g \in G$. Then $\operatorname{ord}(g)$ is a divisor of #G.

5. Suppose a group G contains 5 elements, and let $g \in G$ be a non-identity element.

- (a) Find $\operatorname{ord}(g)$.
- (b) How many elements does the cyclic subgroup $\langle g \rangle$ contain?
- (c) Explain why G is cyclic with generator g.
- 6. Repeat Problem #5 with a group G that contains 7 elements; 19 elements; 101 elements; p elements where p is prime.
- 7. Consider the group D_4 and its subgroup $H = \{\varepsilon, r_{180}, d, d'\}$.

Note: You should be able to complete this problem without the table for D_4 .

- (a) Find $[D_4:H]$.
- (b) Suppose $a \in H$. Determine the elements in the coset aH.
- (c) Same as part (b), but with $a \notin H$.
- 8. In this problem, you'll prove that the distinct cosets of H form a partition of G, i.e.,
 - they cover all of G, and
 - they do not overlap with each other.
 - (a) Give an example that illustrates this notion of a partition.

Ans: $\operatorname{ord}(g) = 5$.

Ans: No. (Why not?)

Hint: See Problem #3

Ans: $[D_4:H] = 2.$

- (b) **Prove:** Every element of G is contained in some coset of H.
- (c) **Prove:** If $aH \neq bH$, then aH and bH do not have any element in common. Hint: Think contrapositive.
- 9. Let G be a group and H and K its subgroups. Define $M = \{g \in G \mid g \in H \text{ and } g \in K\}$.
 - (a) **Prove:** M is a subgroup of G.
 - (b) If #H = 21 and #K = 32, find #M. Explain your reasoning.
- 10. Consider the prime number p = 3.
 - (a) Choose an integer a, compute $a^p a$, and verify that p is a divisor of $a^p a$.
 - (b) Repeat part (a) with another integer a of your choice.
 - (c) Repeat part (a) again, this time with a negative integer a.
- 11. (a) Repeat Problem #10 with prime p = 5; with prime p = 7; with prime p = 11.
 - (b) Repeat Problem #10 with one more prime number of your choice.
 - (c) What conjecture do you have?
- 12. **Prove:** Let p be a prime number. Prove that p is a divisor of $a^p a$ for all $a \in \mathbb{Z}$. ← This is called Fermat's

little theorem.

- \leftarrow i.e., they cover all of G.
- \leftarrow i.e., they don't overlap.

 \leftarrow i.e., M is the intersection of H and K.