Opening experiment

Table for H:

Consider the (multiplicative) group

$$U_{13} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$$

and a subgroup $H = \{1, 3, 9\}$. (See table.)

*	1	3	9
1	1	3	9
3	3	9	1
9	9	1	3

Let $6 \in U_{13}$. We then have a coset

$$6H = \{ 6.1, 6.3, 6.9 \} = \{ 6, 5, 2 \}.$$

Note: The coset 6H is not a subgroup of U_{13} . (Why not?)

Additive group example

Consider the (additive) group

$$\mathbb{Z}_{12} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$$

and a subgroup $H = \{0, 4, 8\}.$

Let $6 \in \mathbb{Z}_{12}$. We then have a coset

$$6+H=\{6+0,6+4,6+8\}=\{6,10,2\}.$$

Note: Cosets of additive groups will be important when we study *rings*.

Examples of cosets:

- Group U_{13} , subgroup $H = \{1, 3, 9\}$, and coset $6H = \{6, 5, 2\}$.
- Group \mathbb{Z}_{12} , subgroup $H = \{0, 4, 8\}$, and coset $6 + H = \{6, 10, 2\}$.

Definition. Let G be a group, H a subgroup, and $a \in G$. Then

(Multiplicative)
$$aH = \{ah \mid h \in H\}$$

(Additive)
$$a + H = \{a + h \mid h \in H\}$$

is the <u>left</u> coset of H generated by a.

Note: The element a is called the *coset representative* of aH (or a + H).

Properties of a (left) coset

Cosets of $H = \{1, 3, 9\}$ in U_{13} are...

•
$$1H = 3H = 9H = \{1, 3, 9\}$$

•
$$2H = 5H = 6H = \{2, 5, 6\}$$

•
$$4H = 10H = 12H = \{4, 10, 12\}$$

•
$$7H = 8H = 11H = \{7, 8, 11\}$$

Cosets of $H = \{0, 4, 8\}$ in \mathbb{Z}_{12} are...

$$\bullet$$
 0 + H = 4 + H = 8 + H = {0, 4, 8}

•
$$1 + H = 5 + H = 9 + H = \{1, 5, 9\}$$

•
$$2 + H = 6 + H = 10 + H = \{2, 6, 10\}$$

•
$$3 + H = 7 + H = 11 + H = \{3, 7, 11\}$$

Let G be a group and H a subgroup. Then...

(a) Let $a \in G$. Then...

(Multiplicative) a is in the coset aH, i.e., $a \in aH$.

(Additive) a is in the coset a + H, i.e., $a \in a + H$.

Reason:

$$H = \{\varepsilon, \ldots\} \implies aH = \{a\varepsilon, \ldots\}$$

 $\implies a \in aH.$

Properties of a (left) coset

Cosets of $H = \{1, 3, 9\}$ in U_{13} are...

•
$$1H = 3H = 9H = \{1, 3, 9\}$$

$$\bullet$$
 $2H = 5H = 6H = \{2, 5, 6\}$

•
$$4H = 10H = 12H = \{4, 10, 12\}$$

•
$$7H = 8H = 11H = \{7, 8, 11\}$$

Cosets of $H = \{0, 4, 8\}$ in \mathbb{Z}_{12} are...

•
$$0 + H = 4 + H = 8 + H = \{0, 4, 8\}$$

•
$$1 + H = 5 + H = 9 + H = \{1, 5, 9\}$$

•
$$2 + H = 6 + H = 10 + H = \{2, 6, 10\}$$

•
$$3 + H = 7 + H = 11 + H = \{3, 7, 11\}$$

Let G be a group and H a subgroup. Then...

(b) Let $a \in G$. Then...

(Multiplicative) aH = H if and only if $a \in H$.

(Additive) a + H = H if and only if $a \in H$.

For a proof, see Chapter 19 reading.

Properties of a (left) coset

Cosets of $H = \{1, 3, 9\}$ in U_{13} are...

•
$$1H = 3H = 9H = \{1, 3, 9\}$$

$$\bullet$$
 $2H = 5H = 6H = \{2, 5, 6\}$

•
$$4H = 10H = 12H = \{4, 10, 12\}$$

•
$$7H = 8H = 11H = \{7, 8, 11\}$$

Cosets of $H = \{0, 4, 8\}$ in \mathbb{Z}_{12} are...

•
$$0 + H = 4 + H = 8 + H = \{0, 4, 8\}$$

•
$$1 + H = 5 + H = 9 + H = \{1, 5, 9\}$$

•
$$2 + H = 6 + H = 10 + H = \{2, 6, 10\}$$

•
$$3 + H = 7 + H = 11 + H = \{3, 7, 11\}$$

Let G be a group and H a subgroup. Then...

- (c) All the left cosets of H have the same size. (Proof in Chapter 19.)
- (d) The distinct left cosets of H form a partition of G. (More next time!)

When are cosets equal?

Example 1. With \mathbb{Z}_{12} and subgroup $H = \{0, 4, 8\}$: 3 + H = 11 + H.

Example 2. With U_{13} and subgroup $H = \{1, 3, 9\}$: 2H = 6H.

Problem #5: Let G be a group, H a subgroup, and $a, b \in G$. Describe how a and b must be related so that...

- a + H = b + H (for additive groups) \leftarrow relationship is additive.
- aH = bH (for multiplicative groups) \leftarrow relationship is multiplicative.

Additive group:
$$a + H = b + H \iff a - b \in H \text{ and } b - a \in H.$$

Multiplicative group: First, a mnemonic, which is not a proof...

$$aH = bH \iff b^{-1} \cdot aH = H \iff b^{-1} \cdot a \in H.$$
 (Likewise for $a^{-1} \cdot b \in H.$)

Thus,
$$aH = bH \iff b^{-1} \cdot a \in H \text{ and } a^{-1} \cdot b \in H.$$
 (Not $a \cdot b^{-1}, b \cdot a^{-1} \in H.$)

Examples: With U_{13} and $H = \{1, 3, 9\},\$

•
$$2H = 6H \iff 6^{-1} \cdot 2 = 11 \cdot 2 = 9 \in H.$$
 6 · 11 = 1 (Mod 13)

•
$$7H \neq 4H \iff 4^{-1} \cdot 7 = 10 \cdot 7 = 5 \notin H$$
. 4 · 10 = 1 (md 13)