Recall:
$$U_7 = \{a \in \mathbb{Z}_7 \mid a \text{ has a multiplicative inverse in } \mathbb{Z}_7\}$$
$$= \{1, 2, 3, 4, 5, 6\}.$$

• Note that U_7 is a group under multiplication.

Discuss in your group:

(a) Find the order of 2 in U_7 .

$$2^{1} = 2$$
, $2^{2} = 4$, $2^{3} = 1 \implies |2| = 3$ or $ord(2) = 3$

(b) Find the order of 3 in U_7 .

$$3^{1} = 3$$
 $3^{4} = 4$

$$3^{2} = 2$$
 $3^{3} = 5$

$$3^{3} = 6$$
 $3^{4} = 4$

$$3^{5} = 5$$

$$3^{5} = 5$$

$$3^{5} = 6$$

$$3^{5} = 1$$

$$3^{5} = 1$$

$$3^{5} = 1$$

$$3^{5} = 1$$

$$3^{5} = 1$$

$$3^{5} = 1$$

Definition. Let g be an element of a group. The order of g is the *smallest* positive exponent n such that $g^n = \varepsilon$.

Notation. We often write |g| = n or $\operatorname{ord}(g) = n$.

Example. In U_7 , we have...

$$2^1 = 2$$
, $2^2 = 4$, $2^3 = 1$, $2^4 = 2$, $2^5 = 4$, $2^6 = 1$, ...

Thus, ord(2) = 3. (Note that $ord(2) \neq 6$.)

Problem #2: Suppose $\operatorname{ord}(g) = 6$. For which $k \operatorname{does} g^k = \varepsilon$?

(a) $6 \mid 48$, because $48 = 6 \cdot 8$ (with remainder 0).

Then
$$g^{48} = g^{6.8} = (g^6)^8 = \xi^8 = \xi$$
.

Thus,
$$g^{48} = \varepsilon$$
.

(b) $6 \nmid 263$, because $263 = 6 \cdot 43 + 5$ (with remainder $\neq 0$).

Then
$$g^{263} = g^{(.43+5)} = (g^6)^{43} \cdot g^5 = \xi^{43} \cdot g^5 = g^5$$
.

But
$$g^5 \neq \varepsilon$$
, since ord $(g) = 6$. Thus, $g^{263} \neq \varepsilon$.

Theorem. Let g a group element with $\operatorname{ord}(g) = n$. Then $n \mid k$ if and only if $g^k = \varepsilon$.

Example: Suppose $\operatorname{ord}(g) = 6$.

•
$$6 \mid 48 \implies g^{48} = \varepsilon$$
.

•
$$6 \nmid 263 \implies g^{263} \neq \varepsilon$$
.

Key: Only $\operatorname{ord}(g)$ or its multiples satisfy $g^k = \varepsilon$.

We have two implications to prove:

1. If
$$n \mid k$$
, then $g^k = \varepsilon$.

2. If $g^k = \varepsilon$, then $n \mid k$. (Equivalently: If $n \nmid k$, then $g^k \neq \varepsilon$.)

Problem #4: Find the remainder when dividing 263 by 6.

- Elizabeth: $263 = 6 \cdot 42 + 11$, so the remainder is 11.
- Anita: $263 = 6 \cdot 44 + (-1)$, so the remainder is -1.
- Answer: $263 = 6 \cdot 43 + 5$, so the remainder is 5.

Theorem (Division algorithm): Let a and b be integers, with $b \ge 1$. Then there exist $q, r \in \mathbb{Z}$ such that $a = b \cdot q + r$ with $0 \le r < b$.

Remarks:

- The remainder must be less than the divisor and non-negative.
- This is helpful for showing $n \mid k$.

Theorem. Let g be a group element with $\operatorname{ord}(g) = n$. If $g^k = \varepsilon$, then $n \mid k$.

Proof know-how: To prove that $n \mid k \dots$

- First write $k = n \cdot q + r$ with $0 \le r < n$.
- Then show that r = 0 (so that we get $k = n \cdot q$).

Proof outline:

- n is the smallest positive integer such that $g^n = \varepsilon$.
- We'll show that $g^r = \varepsilon$, too.
- But $0 \le r < n$. Thus, r must be zero.

Theorem. Let g be a group element with $\operatorname{ord}(g) = n$. If $g^k = \varepsilon$, then $n \mid k$.

Proof: Assume $g^k = \varepsilon$. We must show that $n \mid k$.

Write
$$k = n \cdot q + r$$
 where $q, r \in \mathbb{Z}$ with $0 \le r < n$. We'll show $r = 0$.

Since
$$g^k = \varepsilon$$
, we have $g^{n \cdot q + r} = \varepsilon$.

[Technical details for you to fill in. Or see the reading.]

Thus,
$$g^r = \varepsilon$$
.

But r < n and n is the smallest positive integer such that $g^n = \varepsilon$.

So, r cannot be positive. But $r \geq 0$, and thus r = 0. Then, $k = n \cdot q$.

Therefore, $n \mid k$.