Example:

- $\mathbb{Z}_8 = \{0, 1, 2, 3, 4, 5, 6, 7\}$ is a group under addition.
- Let $H = \{0, 2, 4, 6\}$ be a subset of \mathbb{Z}_8 .

Discuss in your group:

Verify that H is also a group, with the same operation as \mathbb{Z}_8 .

Note: You may assume that addition in \mathbb{Z}_8 is associative.

Verification:

- \checkmark (1) H is closed under addition.
- \checkmark (3) H contains the additive identity 0.
- \checkmark (4) If $a \in H$, then $-a \in H$.

mod 8					
+	0	2	4	6	
0	0	2	4	6	
2	2	4	6	0	
4	4	6	0	2	
6	6	0	2	4	

Example: $H = \{0, 2, 4, 6\}$ is a subgroup of \mathbb{Z}_8 (under +).

Definition: Let G be a group. A subset $H \subseteq G$ is called a subgroup of G if H is also a group using the operation of G.

Non-Example: $U_8 = \{1, 3, 5, 7\}$ is not a subgroup of \mathbb{Z}_8 . Although $U_8 \subseteq \mathbb{Z}_8$, their operations (* and +) are different.

Proof know-how: Suppose we're given a group G and a subset $H \subseteq G$.

Example:

- Group $G = G(\mathbb{Z}_{10}) = \{ \alpha \in M(\mathbb{Z}_{10}) \mid \alpha \text{ has a multiplicative inverse} \}.$
- Subset $H = S(\mathbb{Z}_{10}) = \{ \alpha \in M(\mathbb{Z}_{10}) \mid \det \alpha = 1 \}.$

To show that H is a subgroup of G, we must show...

- 1. If $a, b \in H$, then $ab \in H$.
- \checkmark 2. No need to check (or even mention) associativity, since H inherits the associative operation from G.
 - 3. $\varepsilon \in H$, where ε is the identity element of G.
 - 4. If $h \in H$, then $h^{-1} \in H$.

Theorem: Consider the group $G(\mathbb{Z}_{10})$ and its subset

$$S(\mathbb{Z}_{10}) = \{ \alpha \in M(\mathbb{Z}_{10}) \mid \det \alpha = 1 \}.$$

Then $S(\mathbb{Z}_{10})$ is a subgroup of $G(\mathbb{Z}_{10})$.

Rough draft:

1. Closure: If $\alpha, \beta \in S$, then $\alpha\beta \in S$.

$$\alpha, \beta \in S \Rightarrow \det \alpha = 1$$
 $\Rightarrow \det(\alpha\beta) = \det \alpha \cdot \det \beta = 1$.

- 3. Identity: $\varepsilon = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in S$. det $\varepsilon = |\cdot| 0 \cdot 0 = 1$.
- 4. Inverses: If $\alpha \in S$, then $\alpha^{-1} \in S$.

Know: det
$$d = 1$$
 $4 = 1$
 $4 = 1 = 1$
 $4 = 1$

Theorem: $S(\mathbb{Z}_{10})$ is a subgroup of $G(\mathbb{Z}_{10})$.

Proof: Let α , $\beta \in S$. Then det $\alpha = 1$, det $\beta = 1$.

Thus det (XB) = det d. det B = 1.1 = 1. Hence &BES,

So that S is closed.

We have det & = det [0] = 1.1 - 0.0 = 1. Thus, & E & S.

Recall that XES. Then

$$\det (\alpha^{-1}) = (\det \alpha)^{-1} = \underline{1}^{-1} = \underline{1}. \quad \text{Thus, } \alpha^{-1} \in S.$$

Therefore S is a subgroup of GilZio).

Subgroups of \mathbb{Z}_8 :

Subgroup	# of elements	
• {0}	1	
• {0,4}	2	
• {0, 2, 4, 6}	4	
• _8	8	

More on this later!