Abstract Algebra Day 2 Class Work

- 1. List the elements of the following subsets of \mathbb{Z} .
 - (a) $\{n \in \mathbb{Z} \mid 0 < n < 25 \text{ and } n \text{ is a multiple of } 3\}$
 - (b) $\{n \in \mathbb{Z} \mid 0 < 4n 1 < 20\}$
- 2. Here's another subset of \mathbb{Z} :

 $3\mathbb{Z} = \{n \in \mathbb{Z} \mid n = 3k \text{ where } k \in \mathbb{Z}\}.$

- (a) List a few elements of the set $3\mathbb{Z}$.
- (b) Choose two elements of $3\mathbb{Z}$ and add them together. Is the sum still in $3\mathbb{Z}$? Do this with a few pairs of elements in $3\mathbb{Z}$.
- (c) **Prove:** If $m, n \in 3\mathbb{Z}$, then $m + n \in 3\mathbb{Z}$.

Note: In other words, the set $3\mathbb{Z}$ is closed under addition.

3. Elizabeth and Anita wrote the following proof in Problem #2(c):

Proof: Assume
$$M, n \in 3\mathbb{Z}$$
.
Then $m = 3k$ and $n = 3j$ where $k, j \in \mathbb{Z}$.
Thus, $m + n = 3(k + j) = 3k + 3j \in 3\mathbb{Z}$, since $k + j \in \mathbb{Z}$.
Hence, $M + n \in 3\mathbb{Z}$.

There is a (subtle) logical error in their proof. Find it and fix it.

4. Here's yet another subset of \mathbb{Z} :

~

$$C = \{ n \in \mathbb{Z} \mid n \in 2\mathbb{Z} \text{ and } n \in 3\mathbb{Z} \}.$$

- (a) List a few elements of the set C.
- (b) The set C has a more familiar name. What is it? Can you prove your conjecture?
- 5. Below, C refers to the set from Problem #4.

(a) **Prove:** If $n \in 6\mathbb{Z}$, then $n \in C$. (**Hint:** If n = 6k, then $n = 2 \cdot \boxed{?}$ and $n = 3 \cdot \boxed{?}$.)

- (b) **Prove:** If $n \in C$, then $n \in 6\mathbb{Z}$.
- (c) Anita says, "Parts (a) and (b) together prove that $C = 6\mathbb{Z}$." What might she mean?
- 6. Consider the set $\mathbb{Q} = \left\{ \frac{m}{n} \mid m, n \in \mathbb{Z}, n \neq 0 \right\}$.
 - (a) Write down a few elements of this set.
 - (b) Find the sum $\frac{2}{5} + \frac{7}{3}$. (Be careful, it's not $\frac{9}{8}$.) Is this sum still in \mathbb{Q} ?
 - (c) Choose two elements of \mathbb{Q} and add them together. Is the sum still in \mathbb{Q} ?
 - (d) Repeat part (c) with a few pairs of elements in \mathbb{Q} .

Hint for (b): It's not {3, 7, 11, 15, 19}.

← There are infinitely many.

 If you're stuck, take a look at the next problem.

← If you can't prove it (yet), that's okay. Move onto Problem #5 for now.

Ans to (b): $\frac{41}{15}$.

- (e) **Prove:** If x and y are in \mathbb{Q} , then x + y is in \mathbb{Q} .
- 7. Let S and T be sets. Define their *intersection*, denoted $S \cap T$, to be the set containing elements that are in both S and T.
 - (a) Elizabeth says,

"In Problem #4, I conjectured that $2\mathbb{Z} \cap 3\mathbb{Z} = 6\mathbb{Z}$."

What might she mean?

- (b) Find a value of m such that $4\mathbb{Z} \cap 5\mathbb{Z} = m\mathbb{Z}$.
- (c) Find a value of m such that $7\mathbb{Z} \cap 10\mathbb{Z} = m\mathbb{Z}$.
- (d) Find a value of m such that $10\mathbb{Z} \cap 15\mathbb{Z} = m\mathbb{Z}$.
- (e) Any conjectures? Can you prove your conjecture?