Discuss in your group:

What is the smallest group (in terms of the number of elements) you can think of? Be sure to specify the set and the operation.

Examples:

- {0} under addition.
- {1} under multiplication.
- $\{\varepsilon\}$ under \circ (composition).

Table
$$+ 0$$
 for $\{0\}$ 0 0

Group properties:

- 1. {0} is closed under addition.
- 2. Associative law, i.e., (0+0)+0=0+(0+0).
- 3. $\{0\}$ contains the *additive* identity 0.
- 4. Elements in $\{0\}$ have additive inverses.

Problem #2: Groups with three elements

(a) Notice how these group tables are essentially the same.

Table for \mathbb{Z}_3 :

Table for $\{\varepsilon, r_{120}, r_{240}\}$:

0	$ \varepsilon $	r_{120}	r_{240}
ε	ε	r_{120}	r_{240}
r_{120}	r_{120}	r_{240}	ε
r_{240}	r_{240}	ε	r_{120}

Table for $\{\varepsilon, \sigma, \tau\}$:

0	ε	σ	τ
ε	ε	σ	τ
σ	σ	τ	ω
au	au	ω	σ

(b) Let $G = \{\varepsilon, a, b\}$ be a three-element group. Then...

	ε	a	b
ε	3	a	6
a	a	Ь	3
b	6	8	0

The Sudoku property

To derive the group table for $G = \{\varepsilon, a, b\}$, this group property helps:

 \star Each row/column of the table of a group G contains every element of G exactly once.

	arepsilon	a	b	_	
ε	ε	a	b	-	
a	a		ج	*	$ab = \varepsilon$
b	b			_	

Sudoku property: Let G be a group. In each row or column of its group table, every element of G shows up exactly once.

Proof outline: Let $G = \{\varepsilon, a, b, \ldots, g, \ldots\}$, possibly infinite.

	arepsilon	a	b	• • •	g		•••	
arepsilon								
a								
:								
g	g	ga	gb		gg	$)$ $\cdot \cdot \cdot \cdot)$ $)$		\leftarrow row g
÷								

Focusing on row g, we must show that:

- (1) The elements in this row are all different. at most on ce.
- (2) Every $x \in G$ appears in this row. at least once.

- (1) The elements in this row are all different.
 - This amounts to showing: If $a \neq b$, then $ga \neq gb$.
 - Its contrapositive is: If ga = gb, then a = b (left cancellation).

- (2) Every $x \in G$ appears in this row.
 - Given $x \in G$, we need an element $?? \in G$ such that $g \cdot ?? = x$.
 - With $?? = g^{-1}x$, we have $g \cdot (g^{-1}x) = (gg^{-1})x = \varepsilon x = x$.

