Recall that S_3 is the set of all permutations of $\{1, 2, 3\}$.

Example: With $\sigma, \tau \in S_3$ as shown below, their composition $\sigma \circ \tau$ is ...

$$\sigma \qquad \circ \qquad \tau \qquad = \qquad \xi$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

- Here, ε is the identity element.
- Hence, $\sigma \circ \tau = \varepsilon$, and we also have $\tau \circ \sigma = \varepsilon$.
- Thus, σ and τ are inverses of each other (i.e., $\tau = \sigma^{-1}$ and $\sigma = \tau^{-1}$).

Discuss in your group: What does it mean that S_3 is a *group* under composition? What *group properties* are satisfied?

Definition: The set S_3 is a group under \circ (composition) because...

- 1. S_3 is closed under \circ , i.e., if σ , $\tau \in S_3$, then $\sigma \circ \tau \in S_3$.
- 2. The operation \circ is associative, i.e., $(\sigma \circ \tau) \circ \mu = \sigma \circ (\tau \circ \mu)$ for all $\sigma, \tau, \mu \in S_3$.
- 3. S_3 contains an identity element ε such that $\varepsilon \circ \alpha = \alpha$ and $\alpha \circ \varepsilon = \alpha$ for all $\alpha \in S_3$.
- 4. Each element $\sigma \in S_3$ has an inverse $\sigma^{-1} \in S_3$ such that $\sigma \circ \sigma^{-1} = \varepsilon$ and $\sigma^{-1} \circ \sigma = \varepsilon$.

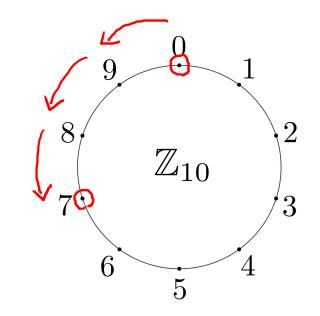
Convention for notation:

- With most groups, we'll employ the *multiplicative* notation.
 - **Example.** In S_3 , we can write $\sigma \tau$ instead of $\sigma \circ \tau$.
- But when we know that the operation is addition (e.g., the group \mathbb{Z}), we'll use the *additive* notation (e.g., 5+2=7).

Additive groups

Examples of groups under addition: \mathbb{Z} , \mathbb{Z}_{10} , \mathbb{Z}_7 .

In
$$\mathbb{Z}_{10}$$
: $3+7=0 \implies$ the additive inverse of 3 is 7
$$\implies -3=7$$



Remark: When the operation is addition, the (additive) inverse of x is denoted by -x, rather than by x^{-1} .

Problem #2: Are \mathbb{Z} , \mathbb{Z}_{10} , and \mathbb{Z}_7 also groups under multiplication?

Answer: No, since 0 does *not* have a multiplicative inverse.

$$0 \cdot x = 1$$
.

Problem #4: In *any* group, we have $(ab)^{-1} = b^{-1}a^{-1}$.

1. Algebraic explanation:

We have
$$(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1} = a \varepsilon a^{-1} = \varepsilon$$
. Also $(b^{-1}a^{-1})(ab) = \varepsilon$.

Thus, the inverse of ab is $b^{-1}a^{-1}$, i.e., $(ab)^{-1} = b^{-1}a^{-1}$.

2. Socks-shoes explanation:

Let a = putting on socks.

b = putting on shoes.

How do you *undo* the product *ab*?

Remark: In a *commutative* group, $(ab)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1}$.

Problem #5(a): What does σ^{-5} mean?

Froblem #5(a): What does σ mean?

• $\sigma^5 = \sigma \sigma \sigma \sigma \sigma$.

Elizabeth: σ^{-5} is the same as $(\sigma^{-1})^5$.

• $\sigma^{-1} = \text{inverse of } \sigma$.

• $\sigma^{-5} = ??$

Anita: σ^{-5} equals $(\sigma^5)^{-1}$.

•
$$\sigma^5 = \sigma \sigma \sigma \sigma \sigma$$

•
$$\sigma^{-1} = \text{inverse of } \sigma$$
.

•
$$\sigma^{-5} = ??$$

We have...

$$(\sigma^{5})^{-1} = (\sigma \sigma \sigma \sigma \sigma)^{-1}$$

$$= \sigma^{-1} \sigma^{-1} \sigma^{-1} \sigma^{-1} \sigma^{-1} \leftarrow \text{socks-shoes!}$$

$$= (\sigma^{-1})^{5}$$