The set of integers

Let \mathbb{Z} denote the set of integers, i.e.,

$$\mathbb{Z} = \{\ldots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \ldots\}.$$

We write

- $3 \in \mathbb{Z}$ to say that 3 is an element of \mathbb{Z} .
- $\frac{2}{5} \notin \mathbb{Z}$ to say that $\frac{2}{5}$ is *not* an element of \mathbb{Z} .

Discuss in your group: Here is a subset of \mathbb{Z} ,

$$A = \{3, 5, 7, \dots, 17, 19\}.$$

Write down all of its elements. How many are there?

What's in this subset?

Question: Write down all the elements of $A = \{3, 5, 7, \dots, 17, 19\}$.

Answer:
$$A = \{3, 5, 7, 11, 13, 17, 19\}$$

Key: Rather than listing elements, describe the *property* they satisfy.

$$A = \{n \in \mathbb{Z} \mid 3 \le n \le 19 \text{ and } n \text{ is prime}\}.$$

where the elements of set A come from. (inside $\{ \}$ only.) by elements of set A.

"such that"

property satisfied

Closed under addition

Let $3\mathbb{Z} = \{n \in \mathbb{Z} \mid n = 3k \text{ where } k \in \mathbb{Z}\}$, i.e., the set of multiples of 3.

Prove: If $m, n \in 3\mathbb{Z}$, then $m+n \in 3\mathbb{Z}$. (So, the set $3\mathbb{Z}$ is closed under addition.)

Picture:

Proof: Assume m, n E 37.

Then m=3k and n=3j where R, j E Z.

Thus, $m+n=3(k+j)=3k+3j\in 3\mathbb{Z}$, since $k+j\in\mathbb{Z}$.

Hence, M+n E3I.

Proving set equality

Let $C = \{n \in \mathbb{Z} \mid n \in 2\mathbb{Z} \text{ and } n \in 3\mathbb{Z}\}$, i.e., the set of multiples of 2 and 3.

Claim: $C = 6\mathbb{Z}$, i.e., the sets C and $6\mathbb{Z}$ are equal. (How can we prove it?)

Proof know-how: To show that sets S and T are equal...

- We must prove *two* things:
 - $\circ S \subseteq T$ (i.e., S is a subset of T)
 - \circ $T \subseteq S$ (i.e., T is a subset of S)
- How do we show that, say, $S \subseteq T$?
 - \circ $S \subseteq T$ means every element of S is an element of T.
 - \circ Written as an implication: If $n \in S$, then $n \in T$.
 - \circ Assume $n \in S$. Then show that $n \in T$.

Problem #5(a)

Claim: $6\mathbb{Z} \subseteq C$. (See HW for $C \subseteq 6\mathbb{Z}$.)

Recall: $C = \{ n \in \mathbb{Z} \mid n \in 2\mathbb{Z} \text{ and } n \in 3\mathbb{Z} \}.$

Proof: We must prove... If $n \in 6\mathbb{Z}$, then $n \in C$.

Assume $n \in 6\mathbb{Z}$.

Then n = 6K for some integer K.

Thus, n = 2.3k Where $3k \in \mathbb{Z}$. Therefore, $n \in 2\mathbb{Z}$.

Similarly, $n = 3 \cdot 2k$ Where $2k \in \mathbb{Z}$. So, $n \in 3\mathbb{Z}$.

Hence, $n \in C$.