Abstract Algebra Day 8 Class Work

- 1. Come up with as many examples of groups as possible. Be sure to...
 - Specify both the set (e.g., S_3) and the operation (e.g., \circ).
 - Check the group properties 1 through 4.
 - Determine if the group is commutative or non-commutative.
- 2. Here are some examples of groups under *addition*: \mathbb{Z} , \mathbb{Z}_{10} , \mathbb{Z}_7 . Each of these sets is also Ans: No. (Why not?) closed under multiplication. Are they groups under multiplication? Why or why not?
- 3. Recall that $U_{10} = \{a \in \mathbb{Z}_{10} \mid a \text{ has a multiplicative inverse in } \mathbb{Z}_{10}\}.$
 - (a) Find the elements of U_{10} . (Hint: There are four of them.)
 - (b) Construct a multiplication table for U_{10} .

(c) Use the table to check the group properties for U_{10} .

Note: You may simply assume that multiplication is associative.

(d) Is U_{10} commutative or non-commutative?

4. With $\sigma, \tau \in S_3$, we've seen that $(\sigma \tau)^{-1} \neq \sigma^{-1} \tau^{-1}$, but instead $(\sigma \tau)^{-1} = \tau^{-1} \sigma^{-1}$.

- (a) Compute $(\sigma\tau)(\tau^{-1}\sigma^{-1})$ and $(\tau^{-1}\sigma^{-1})(\sigma\tau)$.
- (b) Using your results in part (a), explain why $(\sigma \tau)^{-1} = \tau^{-1} \sigma^{-1}$ is always true.
- (c) Why might this be called the "socks-shoes" property?
- 5. In S_3 , consider again

$$\sigma = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right).$$

- (a) Elizabeth says, " σ^{-5} is the same as $(\sigma^{-1})^5$." Anita claims that $\sigma^{-5} = (\sigma^5)^{-1}$. With whom do you agree?
- (b) Compute $(\sigma^{-1})^5$ and $(\sigma^5)^{-1}$, and verify that they're equal.

6. Theorem (left cancellation): Let a, b, c be elements of a group. If ab = ac, then b = c.

- (a) In \mathbb{Z}_{10} , we have $2 \cdot 6 = 2 \cdot 1$, even though $6 \neq 1$. Explain why this does not violate Hint: See Problem #2. the (left) cancellation law.
- (b) Define $\sigma, \tau, \mu \in S_3$, respectively, by

$$\left(\begin{array}{rrrr}1 & 2 & 3\\ 3 & 2 & 1\end{array}\right), \quad \left(\begin{array}{rrrr}1 & 2 & 3\\ 1 & 3 & 2\end{array}\right), \quad \left(\begin{array}{rrrr}1 & 2 & 3\\ 2 & 1 & 3\end{array}\right).$$

Compute the products $\sigma\tau$ and $\mu\sigma$ and verify that they're equal.

(c) Anita says, "We have $\sigma \tau = \mu \sigma$. If we cancel σ from both sides, we get $\tau = \mu$. How's that possible?" How would you respond to her?

Note: We must be specific about the type of inverse (multiplicative or additive)

Hint: Use the associative law to regroup elements.

← Therefore, we can unambiguously say σ^{-5}

- 7. Prove the left cancellation law, stated in Problem #6. In your proof, be sure to specify the group properties that are used.
- 8. In Problem #3, we saw that U_{10} is a group under multiplication.
 - (a) What about U_{35} ? Is it a group under multiplication? How do you know?
 - (b) More generally, explain why U_m is a group under multiplication.
- 9. (a) Consider $U_8 = \{1, 3, 5, 7\}$. Verify that $a^2 = 1$ for all $a \in U_8$.
 - (b) Is U_8 commutative or non-commutative?
 - (c) Repeat parts (a) and (b) with the group U_{12} . (First find the elements of U_{12} .)
- 10. Consider the subset $C(h) = \{\varepsilon, r_{180}, h, v\}$ of D_4 . In Day 5 Class Work, we verified that C(h) is a group under composition.
 - (a) Now verify that $\alpha^2 = \varepsilon$ for all $\alpha \in C(h)$.
 - (b) Is C(h) commutative or non-commutative?
- 11. (a) **Prove:** Let G be a group. If $g^2 = \varepsilon$ for all $g \in G$, then G is commutative.
 - (b) Is the converse of the statement in part (a) true? If it's true, prove it. If it's false, give a counterexample.

Note: Right cancellation is defined/proved similarly.

 Constructing a table is not recommended...

← U₈ is a group under multiplication.

Recall: C(h) is called the *centralizer* of h in D_4 .

Ans: Commutative.