Abstract Algebra Day 5 Class Work

- 1. Consider the symmetries of a square $D_4 = \{\varepsilon, r_{90}, r_{180}, r_{270}, h, v, d, d'\}$.
 - (a) Verify that $r_{90} \circ d = h$. In particular, note that $r_{90} \circ d \neq d \circ r_{90}$.

$$(r_{90} \circ d) \left(\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \right) = r_{90} \left(d \left(\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \right) \right) = r_{90} \left(\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \right) = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$$

(b) Complete the composition table for D_4 below. For $\sigma, \tau \in D_4$, the "product" $\sigma \circ \tau$ is \leftarrow To check, see the entries the entry in row σ and column τ .

0	ε	r_{90}	r_{180}	r_{270}	h	v	d	d'
ε								
r_{90}			r_{270}		d'	d	h	v
r_{180}					v		d'	d
r_{270}					d	d'	v	h
h		d	v	d'		r_{180}	r_{90}	r_{270}
v		d'		d	r_{180}		r_{270}	r_{90}
d		v	d'	h	r_{270}	r_{90}		r_{180}
d'		h	d	v		r_{270}	r_{180}	

- 2. Now, we'll check the "group properties" of D_4 . Use the table from Problem $\#1(b) \leftarrow \text{Soon, we'll define what}$ we mean by a "group." in answering the questions below.
 - (a) Is D_4 closed under composition? Why or why not?
 - (b) Choose three elements σ , τ , $\mu \in D_4$. Using the table from Problem #1(b), \leftarrow i.e., the associative law. verify that $(\sigma \circ \tau) \circ \mu = \sigma \circ (\tau \circ \mu)$.
 - (c) When completing the composition table for D_4 , why was it easy to compute the row and column containing ε ? Why might ε be called the *identity* motion?
 - (d) Look at the table again. Explain why r_{90} and r_{270} are said to be *inverses* of each Hint: $r_{90} \circ r_{270} = ??$ other in D_4 . Does every element in D_4 have an inverse? Why or why not?
- 3. Consider $h \in D_4$, i.e., the reflection about the horizontal axis of the square.
 - (a) Let C(h) be the subset of D_4 defined by $C(h) = \{\sigma \in D_4 \mid \sigma \circ h = h \circ \sigma\}$. For $\leftarrow C(h)$ is called the centralizer of h in D_4 . example, we have $\varepsilon \in C(h)$ because $\varepsilon \circ h = h \circ \varepsilon$. Find all elements of C(h).
 - (b) Check that $C(h) = \{\varepsilon, r_{180}, h, v\}.$
 - (c) Construct a composition table for C(h), then check the "group properties" for C(h). \leftarrow Use the big table from Problem #1(b)Why might C(h) be called a subgroup of D_4 ?
- 4. (a) Come up with another subgroup of D_4 . Be sure to check its "group properties."
 - (b) In fact, see if you can come up with all subgroups of D_4 .
- 5. Pick any row or column of the table for D_4 . Notice anything? Can you explain it? \leftarrow It's the Sudoku property

6. (Some Food for Thought)

- (a) Draw a figure whose symmetries include only r_0 , r_{90} , r_{180} , and r_{270} .
- (b) Draw a figure whose symmetries include only r_0 , r_{180} , h, and v.
- (c) How many symmetries of a tetrahedron are there?

 \leftarrow Feel free to use the picture below.

for $r_{90} \circ d$ and $d \circ r_{90}$.

Note: Tetrahedron is a 3D figure with four equilateral triangles as its faces.