## Abstract Algebra <br> Day 4 Class Work

1. Compute each of the following in $\mathbb{Z}_{7}$. Simplify your result as much as possible.
(a) $6+4$
(b) $4 \cdot 2$
(c) $2-5$
(d) $3^{4}$
(e) 3258
(f) -3258
2. (a) Describe all integers $n$ such that $n=0$ in $\mathbb{Z}_{7}$.
(b) Describe all integers $n$ such that $n=2$ in $\mathbb{Z}_{7}$.
3. For each pair $a$ and $b$, determine whether or not $a=b$ in $\mathbb{Z}_{7}$.
(a) $a=16$ and $b=30$
(b) $a=3258$ and $b=3288$
(c) $a=-710$ and $b=-731$
(d) $a=98765123406$ and $b=98765123476$
4. Given $a, b \in \mathbb{Z}$, describe how you can determine whether or not $a=b$ in $\mathbb{Z}_{7}$. Can you do this without first simplifying each of $a$ and $b$ in $\mathbb{Z}_{7}$ ?
5. Consider $\mathbb{Z}_{7}=\{0,1,2,3,4,5,6\}$ again. Recall that 3 is a multiplicative inverse of 5 because $3 \cdot 5=1$. (And vice versa, i.e., 5 is a multiplicative inverse of 3 .) Find all other elements of $\mathbb{Z}_{7}$ that have multiplicative inverses.
6. Now switch gears and consider the number system $\mathbb{Z}_{5}=\{0,1,2,3,4\}$. Which one of these elements have multiplicative inverses?
7. (a) Repeat Problem $\# 6$ with $\mathbb{Z}_{6}$, with $\mathbb{Z}_{10}$, and with $\mathbb{Z}_{15}$. Any conjectures?
(b) In $\mathbb{Z}_{35}$, does 8 have a multiplicative inverse? What about 10 ? How do you know?
8. (a) In $\mathbb{Z}_{2584}$, does 2583 have a multiple inverse? If so, find it. If not, explain why not.
(b) Generalize your result from part (a).
9. (a) True or False: In $\mathbb{Z}_{m}$, if $a \cdot b=0$, then $a=0$ or $b=0$.
(b) The statement in part (a) is true for which values of $m$ ? false for which values of $m$ ?
(c) Justify your conjectures from part (b).
10. In $\mathbb{Z}_{7}$, compute $6^{231}$. Also compute $2^{101}$.
11. (Some Food for Thought) Compute

$$
a^{6}+a^{5}+a^{4}+a^{3}+a^{2}+a+1
$$

for each $a \in \mathbb{Z}_{7}$ with $a \neq 1$. Can you explain what's going on and why?

