Abstract Algebra Day 37 Class Work Solutions

Let M be an ideal of a ring R. In the problems below, we'll prove the following claim:

Claim. If R/M is a field, then M is maximal in R.

- 1. (a) (Discuss in your group) Make sense of the following proof outline.
 - Let A be an ideal of R such that $M \subseteq A \subseteq R$.
 - We must show that A = M or A = R.
 - If A = M, then we're done. So assume $A \neq M$.
 - Now we must show that A = R.

Solution. Showing A = M or A = R would imply that there *isn't* an ideal strictly between M and R, and hence M is maximal.

(b) Draw a picture that shows how M, A, and R from part (a) are related.

Solution. Assuming $A \neq M$, we must show that A = R.

- 2. Let $a \in A$ such that $a \notin M$.
 - (a) Based on the proof outline in Problem #1, explain why such an element a must exist.

Solution. Such an element a must exist, because $M \subseteq A$ but $M \neq A$. Do you see where the element a would exist in the picture for Problem #1(b)?

- (b) In the quotient ring R/M, does a + M = 0 + M? Explain. Ans: No. (Why not?) Solution. No, $a \notin M$ implies that $a + M \neq 0 + M$.
- 3. (a) Explain why there exists $b + M \in R/M$ such that $(a + M) \cdot (b + M) = 1 + M$.
 - (b) Before we could make the conclusion in part (a), why did we need to first verify \leftarrow In a field, which elements (in Problem #2) that $a + M \neq 0 + M$?

Solution. Since R/M is a field, every *non-zero* element such as a + M is a unit, i.e., it has a multiplicative inverse b + M such that $(a + M) \cdot (b + M) = 1 + M$.

4. (a) Elizabeth says, "So (a + M) · (b + M) = 1 + M is the same as a · b + M = 1 + M. ← Using the shortcut. That means a · b = 1." Do you agree or disagree with her? Explain.
Hint: α + M = β + M if and only if...?

Solution. Disagree, since $a \cdot b + M = 1 + M$ implies that $a \cdot b - 1 \in M$.

(b) How are the elements $a \cdot b$ and 1 really related?

Solution. See solution to part (a).

(c) Let $m = a \cdot b - 1$. Explain why $m \in A$.

Solution. Since $m = a \cdot b - 1 \in M$ from above and $M \subseteq A$, we obtain $m \in A$.

(d) Use part (c) and the fact that A is an ideal to explain why $1 \in A$.

Solution. $1 = a \cdot b - m$ is in A, because $a, m \in A$ and A is an ideal, i.e., $a \cdot b \in A$ by product absorption; and $a \cdot b - m \in A$, because A is an additive subgroup of R.

5. Explain why $1 \in A$ implies that A = R.

Hint: $A \subseteq R$ is immediate, since A is an ideal of R. So it suffices to show that $R \subseteq A$.

Solution. Let $r \in R$. Then, since $1 \in A$, we have $r = 1 \cdot r \in A$ by product absorption. Thus, $R \subseteq A$. Combining that with $A \subseteq R$, we obtain A = R.

6. (Discuss in your group) Review the proof of the claim again, making sure everyone in your group understands the key points.

Let M be an ideal of a ring R. In the problems below, we'll prove the following claim:

Claim. If M is maximal in R, then R/M is a field.

- 7. (Discuss in your group) Make sense of the following proof outline.
 - Let $a + M \neq 0 + M$ in R/M. Thus, $a \notin M$.
 - We must show that $(a + M) \cdot (r + M) = 1 + M$ for some $r + M \in R/M$.

Solution. To show that R/M is a field, we must show that any non-zero element of R/M such as a + M defined above has a multiplicative inverse.

- 8. We have $a \notin M$. Define the set $M + \langle a \rangle = \{m + \alpha \mid m \in M, \alpha \in \langle a \rangle\}$, which turns out to \leftarrow Here, $M + \langle a \rangle$ is be an ideal of R. Here, $\langle a \rangle = \{a \cdot r \mid r \in R\}$ is the principal ideal generated by a.
 - (a) Explain why $M \subseteq M + \langle a \rangle$.

Hint: Let $m \in M$ and show that $m \in M + \langle a \rangle$.

Solution. Let $m \in M$. Then $m = m + a \cdot 0 \in M + \langle a \rangle$.

(b) Explain why $a \in M + \langle a \rangle$.

Solution. We have $a = 0 + a \cdot 1 \in M + \langle a \rangle$. Note that $0 \in M$, because M is an ideal, hence an additive subgroup of R.

- 9. Problem #8(a) shows that $M \subseteq M + \langle a \rangle \subseteq R$.
 - (a) Given that M is a maximal ideal, what can we conclude about M + ⟨a⟩?
 Solution. Either M + ⟨a⟩ = M or M + ⟨a⟩ = R.
 - (b) Does $M + \langle a \rangle = M$ or $M + \langle a \rangle = R$?

Hint: Your result in Problem #8(b) should help.

Solution. Since $a \in M + \langle a \rangle$, but $a \notin M$, we have $M + \langle a \rangle \neq M$. Thus, $M + \langle a \rangle = R$.

Ans to (c): $m \in M \subseteq A$.

Hint: $1 = a \cdot b - m$.

Ans: Suppose $r \in R$.

Then $r = 1 \cdot r \in A$.

Ans: $m = m + a \cdot 0$.

Ans: $a = 0 + a \cdot 1$.

- 10. (a) Use Problem #9(b) to explain why 1 = m + a ⋅ r for some m ∈ M and r ∈ R.
 Solution. Since 1 ∈ R, and M + ⟨a⟩ = R, we have 1 ∈ M + ⟨a⟩.
 - (b) Explain why $(a + M) \cdot (r + M) = 1 + M$.

Solution. Since $1 = m + a \cdot r$, we have $1 - a \cdot r = m \in M$, so that $a \cdot r + M = 1 + M$. But $a \cdot r + M = (a + M) \cdot (r + M)$, so that $(a + M) \cdot (r + M) = 1 + M$.

- 11. (Discuss in your group) Review the proof of the claim again, making sure everyone in your group understands the key points.
- 12. In the above proof, we used the fact that

 $M + \langle a \rangle = \{ m + \alpha \mid m \in M, \, \alpha \in \langle a \rangle \}$

is an ideal of R. Note that M and $\langle a \rangle$ are both ideals of R.

Prove: Let I and J be ideals of a ring R. Define

$$I + J = \{i + j \mid i \in I, j \in J\}.$$

Then I + J is an ideal of R.

PROOF. We first show that I + J is an additive subgroup of R. For closure, let $i_1 + j_1$, $i_2 + j_2 \in I + J$ where $i_1, i_2 \in I$ and $j_1, j_2 \in J$. Then,

$$(i_1 + j_1) + (i_2 + j_2) = (i_1 + i_2) + (j_1 + j_2) \in I + J,$$

since I and J are both closed under addition. Since I and J both contain the additive identity 0, we have $0 = 0 + 0 \in I + J$. Lastly, $-(i_1 + j_1) = (-i_1) + (-j_1) \in I + J$ so that I + J contains the additive inverses of its elements.

For product absorption, let $r \in R$. Then $r \cdot (i_1 + j_1) = (r \cdot i_1) + (r \cdot j_1) \in I + J$, since I and J both satisfy product absorption. Therefore, I + J is an ideal of R, as desired.

- 13. Write down complete proofs of today's claims:
 - (a) If R/M is a field, then M is maximal in R.
 - (b) If M is maximal in R, then R/M is a field.

Solution. See Theorems 37.2(a) and 37.2(b) and their proofs in the textbook.

14. In Problem #13(a), we proved the contrapositive of the statement:

If M is not maximal in R, then R/M is not a field.

Explore and describe what happens if we try to prove the original statement, rather than the contrapositive.

- 15. In Problem #13(a), we assumed that $A \neq M$ and showed that A = R. Explore and describe what happens if we assume instead that $A \neq R$ and try to show that A = M.
- 16. After writing down the proof in Problem #13(b), Anita wonders:

" $M + \langle a \rangle$ seems like it was pulled out of thin air. What's the *motivation* behind using this ideal? How could I have come up with it on my own?"

How would you respond to Anita?

Solution. See the explanation after the proof of Theorem 37.2(b) in the textbook.

 $\leftarrow \text{ And the proof is done!}$

← From Chapter 31.

 $\leftarrow M \text{ is an ideal of a ring } R.$