Abstract Algebra Day 37 Class Work Solutions

Let M be an ideal of a ring R. In the problems below, we'll prove the following claim:

Claim. If R / M is a field, then M is maximal in R.

1. (a) (Discuss in your group) Make sense of the following proof outline.

- Let A be an ideal of R such that $M \subseteq A \subseteq R$.
- We must show that $A=M$ or $A=R$.
- If $A=M$, then we're done. So assume $A \neq M$.
- Now we must show that $A=R$.

Solution. Showing $A=M$ or $A=R$ would imply that there $i s n ' t$ an ideal strictly between M and R, and hence M is maximal.
(b) Draw a picture that shows how M, A, and R from part (a) are related.

Solution. Assuming $A \neq M$, we must show that $A=R$.

2. Let $a \in A$ such that $a \notin M$.
(a) Based on the proof outline in Problem \#1, explain why such an element a must exist.

Solution. Such an element a must exist, because $M \subseteq A$ but $M \neq A$. Do you see where the element a would exist in the picture for Problem $\# 1(\mathrm{~b})$?
(b) In the quotient ring R / M, does $a+M=0+M$? Explain.

Ans: No. (Why not?)
Solution. No, $a \notin M$ implies that $a+M \neq 0+M$.
3. (a) Explain why there exists $b+M \in R / M$ such that $(a+M) \cdot(b+M)=1+M$.
(b) Before we could make the conclusion in part (a), why did we need to first verify (in Problem \#2) that $a+M \neq 0+M$?
\leftarrow In a field, which elements have mult. inverses?

Solution. Since R / M is a field, every non-zero element such as $a+M$ is a unit, i.e., it has a multiplicative inverse $b+M$ such that $(a+M) \cdot(b+M)=1+M$.
4. (a) Elizabeth says, "So $(a+M) \cdot(b+M)=1+M$ is the same as $a \cdot b+M=1+M . \quad \leftarrow$ Using the shortcut. That means $a \cdot b=1$." Do you agree or disagree with her? Explain.
Hint: $\alpha+M=\beta+M$ if and only if. . .?
Solution. Disagree, since $a \cdot b+M=1+M$ implies that $a \cdot b-1 \in M$.
(b) How are the elements $a \cdot b$ and 1 really related?

Solution. See solution to part (a).
(c) Let $m=a \cdot b-1$. Explain why $m \in A$.

Ans to (c): $m \in M \subseteq A$.
Solution. Since $m=a \cdot b-1 \in M$ from above and $M \subseteq A$, we obtain $m \in A$.
(d) Use part (c) and the fact that A is an ideal to explain why $1 \in A$.

Solution. $1=a \cdot b-m$ is in A, because $a, m \in A$ and A is an ideal, i.e., $a \cdot b \in A$ by product absorption; and $a \cdot b-m \in A$, because A is an additive subgroup of R.
5. Explain why $1 \in A$ implies that $A=R$.

Hint: $A \subseteq R$ is immediate, since A is an ideal of R. So it suffices to show that $R \subseteq A$.
Solution. Let $r \in R$. Then, since $1 \in A$, we have $r=1 \cdot r \in A$ by product absorption. Thus, $R \subseteq A$. Combining that with $A \subseteq R$, we obtain $A=R$.
6. (Discuss in your group) Review the proof of the claim again, making sure everyone in your group understands the key points.

Let M be an ideal of a ring R. In the problems below, we'll prove the following claim:

Claim. If M is maximal in R, then R / M is a field.
7. (Discuss in your group) Make sense of the following proof outline.

- Let $a+M \neq 0+M$ in R / M. Thus, $a \notin M$.
- We must show that $(a+M) \cdot(r+M)=1+M$ for some $r+M \in R / M$.

Solution. To show that R / M is a field, we must show that any non-zero element of R / M such as $a+M$ defined above has a multiplicative inverse.
8. We have $a \notin M$. Define the set $M+\langle a\rangle=\{m+\alpha \mid m \in M, \alpha \in\langle a\rangle\}$, which turns out to be an ideal of R. Here, $\langle a\rangle=\{a \cdot r \mid r \in R\}$ is the principal ideal generated by a.
(a) Explain why $M \subseteq M+\langle a\rangle$.

Hint: Let $m \in M$ and show that $m \in M+\langle a\rangle$.
Solution. Let $m \in M$. Then $m=m+a \cdot 0 \in M+\langle a\rangle$.
(b) Explain why $a \in M+\langle a\rangle$.

Ans: $m=m+a \cdot 0$.

Solution. We have $a=0+a \cdot 1 \in M+\langle a\rangle$. Note that $0 \in M$, because M is an ideal, hence an additive subgroup of R.
9. Problem $\# 8(\mathrm{a})$ shows that $M \subseteq M+\langle a\rangle \subseteq R$.
(a) Given that M is a maximal ideal, what can we conclude about $M+\langle a\rangle$?

Solution. Either $M+\langle a\rangle=M$ or $M+\langle a\rangle=R$.
(b) Does $M+\langle a\rangle=M$ or $M+\langle a\rangle=R$?

Hint: Your result in Problem \#8(b) should help.
Solution. Since $a \in M+\langle a\rangle$, but $a \notin M$, we have $M+\langle a\rangle \neq M$. Thus, $M+\langle a\rangle=R$.
10. (a) Use Problem \#9(b) to explain why $1=m+a \cdot r$ for some $m \in M$ and $r \in R$.

Solution. Since $1 \in R$, and $M+\langle a\rangle=R$, we have $1 \in M+\langle a\rangle$.
(b) Explain why $(a+M) \cdot(r+M)=1+M$.

Solution. Since $1=m+a \cdot r$, we have $1-a \cdot r=m \in M$, so that $a \cdot r+M=1+M$. But $a \cdot r+M=(a+M) \cdot(r+M)$, so that $(a+M) \cdot(r+M)=1+M$.
11. (Discuss in your group) Review the proof of the claim again, making sure everyone in your group understands the key points.
12. In the above proof, we used the fact that

$$
M+\langle a\rangle=\{m+\alpha \mid m \in M, \alpha \in\langle a\rangle\}
$$

is an ideal of R. Note that M and $\langle a\rangle$ are both ideals of R.
Prove: Let I and J be ideals of a ring R. Define

$$
I+J=\{i+j \mid i \in I, j \in J\} .
$$

Then $I+J$ is an ideal of R.
Proof. We first show that $I+J$ is an additive subgroup of R. For closure, let $i_{1}+j_{1}$, $i_{2}+j_{2} \in I+J$ where $i_{1}, i_{2} \in I$ and $j_{1}, j_{2} \in J$. Then,

$$
\left(i_{1}+j_{1}\right)+\left(i_{2}+j_{2}\right)=\left(i_{1}+i_{2}\right)+\left(j_{1}+j_{2}\right) \in I+J
$$

since I and J are both closed under addition. Since I and J both contain the additive identity 0 , we have $0=0+0 \in I+J$. Lastly, $-\left(i_{1}+j_{1}\right)=\left(-i_{1}\right)+\left(-j_{1}\right) \in I+J$ so that $I+J$ contains the additive inverses of its elements.

For product absorption, let $r \in R$. Then $r \cdot\left(i_{1}+j_{1}\right)=\left(r \cdot i_{1}\right)+\left(r \cdot j_{1}\right) \in I+J$, since I and J both satisfy product absorption. Therefore, $I+J$ is an ideal of R, as desired.
13. Write down complete proofs of today's claims:
(a) If R / M is a field, then M is maximal in R.
(b) If M is maximal in R, then R / M is a field.

Solution. See Theorems 37.2(a) and 37.2(b) and their proofs in the textbook.
14. In Problem \#13(a), we proved the contrapositive of the statement:

If M is not maximal in R, then R / M is not a field.
Explore and describe what happens if we try to prove the original statement, rather than the contrapositive.
15. In Problem \#13(a), we assumed that $A \neq M$ and showed that $A=R$. Explore and describe what happens if we assume instead that $A \neq R$ and try to show that $A=M$.
16. After writing down the proof in Problem \#13(b), Anita wonders:
" $M+\langle a\rangle$ seems like it was pulled out of thin air. What's the motivation behind using this ideal? How could I have come up with it on my own?"
How would you respond to Anita?
Solution. See the explanation after the proof of Theorem 37.2(b) in the textbook.

