Abstract Algebra Day 36 Class Work

- 1. Determine whether each ideal of \mathbb{Z} is maximal.
 - (a) 6Z (b) 17Z (c) 41Z (d) 375Z (e) $n\mathbb{Z}$
- 2. Determine whether each ideal of $\mathbb{R}[x]$ is maximal. You don't have to justify these (yet). \leftarrow Your *instinct* says...?
 - (a) $\langle x^2 1 \rangle = \{ (x^2 1) \cdot q(x) \mid q(x) \in \mathbb{R}[x] \}$, i.e., the set of all multiples of $x^2 1$.

(b)
$$\langle x^2 + 1 \rangle$$

- 3. Let $g(x) = x^2 1 \in \mathbb{R}[x]$. Below, we'll show that $\langle g(x) \rangle$ is not maximal in $\mathbb{R}[x]$.
 - (a) **Prove:** $\langle g(x) \rangle \subseteq \langle x+1 \rangle$. **Hint:** Let $\alpha(x) \in \langle g(x) \rangle$ and show that $\alpha(x) \in \langle x+1 \rangle$.
 - (b) Find a polynomial $\beta(x)$ such that $\beta(x) \in \langle x+1 \rangle$, but $\beta(x) \notin \langle g(x) \rangle$.
 - (c) Find a polynomial $\gamma(x)$ such that $\gamma(x) \in \mathbb{R}[x]$, but $\gamma(x) \notin \langle x+1 \rangle$.

<

(d) Use your results above to explain why

$$|g(x)\rangle \subsetneq \langle x+1 \rangle \subsetneq \mathbb{R}[x],$$

i.e., $\langle x+1 \rangle$ is strictly between $\langle g(x) \rangle$ and $\mathbb{R}[x]$. So, $\langle g(x) \rangle$ is not maximal in $\mathbb{R}[x]$.

Recall. Every ideal of F[x] is principal, i.e., $A = \langle p(x) \rangle$ for some $p(x) \in F[x]$.

 \leftarrow See Chapter 31

- 4. Let $g(x) = x^2 + 1 \in \mathbb{R}[x]$. Below, we'll show that $\langle g(x) \rangle$ is maximal in $\mathbb{R}[x]$.
 - (a) Elizabeth says, "Here's my plan. Let $\langle p(x) \rangle$ be an ideal where $\langle g(x) \rangle \subseteq \langle p(x) \rangle \subseteq \mathbb{R}[x]$. Then I'll show that $\langle p(x) \rangle$ must be equal to either $\langle g(x) \rangle$ or $\mathbb{R}[x]$." Explain why her Ans: This is the definition approach will show that $\langle q(x) \rangle$ is maximal.
 - (b) **Prove:** If $\langle g(x) \rangle \subseteq \langle p(x) \rangle$, then $g(x) = p(x) \cdot q(x)$ for some $q(x) \in \mathbb{R}[x]$.
 - (c) Anita says, "But $g(x) = x^2 + 1$ is unfactorable in $\mathbb{R}[x]$. So $g(x) = p(x) \cdot q(x)$ would mean that either p(x) or q(x) has to be a constant." What might she mean?
 - (d) Suppose p(x) is a constant. Say p(x) = 3, so that $g(x) = p(x) \cdot q(x)$ would be $x^2 + 1 = 3 \cdot \left(\frac{1}{3}x^2 + \frac{1}{3}\right)$. Explain why $\langle 3 \rangle = \mathbb{R}[x]$, so that $\langle p(x) \rangle = \mathbb{R}[x]$.

Hint: $\langle 3 \rangle = \mathbb{R}[x]$ means every polynomial in $\mathbb{R}[x]$ is a multiple of 3.

- (e) This time, suppose q(x) is a constant. Say q(x) = 3 and $p(x) = \frac{1}{3}x^2 + \frac{1}{3}$, so that $g(x) = p(x) \cdot q(x)$ would be $x^2 + 1 = \left(\frac{1}{3}x^2 + \frac{1}{3}\right) \cdot 3$. Explain why $\langle \frac{1}{3}x^2 + \frac{1}{3} \rangle = \langle x^2 + 1 \rangle$, so that $\langle p(x) \rangle = \langle g(x) \rangle$. **Hint:** Show that $\langle \frac{1}{3}x^2 + \frac{1}{3} \rangle \subseteq \langle x^2 + 1 \rangle$ and $\langle x^2 + 1 \rangle \subseteq \langle \frac{1}{3}x^2 + \frac{1}{3} \rangle$.
- (f) Explain why $\langle g(x) \rangle$ is a maximal ideal.
- 5. Generalize your results from Problems #3 and #4 to prove each of the following.

Theorem. Let F be a field and fix $q(x) \in F[x]$.

- (a) If g(x) is factorable, then $\langle g(x) \rangle$ is not maximal in F[x].
- (b) If q(x) is unfactorable, then $\langle q(x) \rangle$ is maximal in F[x].

Ans: $f(x) = 3 \cdot (\frac{1}{2}f(x))$.

of a maximal ideal.

Hint: $g(x) \in \langle g(x) \rangle$.

 \leftarrow Just like $12\mathbb{Z} \subset 4\mathbb{Z}$

Ans: $\beta(x) = x + 1$.

Recall: $\langle g(x) \rangle \subsetneq \langle x+1 \rangle$ means $\langle g(x) \rangle \subseteq \langle x+1 \rangle$, but $\langle g(x) \rangle \neq \langle x+1 \rangle$.

6. **Prove:** The ideal $n\mathbb{Z}$ is maximal in \mathbb{Z} if and only if *n* is prime.

Hint: This is an "if and only if" statement, so there are two directions to prove. For one \leftarrow Your polynomial proofs of them, it would be easier to prove the contrapositive.

 \leftarrow There are six of them.

← Thus, they're ideals.

Ans: $\langle 3 \rangle$ and $\langle 2 \rangle$.

- 7. Consider the ring \mathbb{Z}_{12} .
 - (a) Find all of its additive subgroups.
 - (b) Verify that each subgroup in part (a) satisfies the product absorption property.
 - (c) Determine which ideals of \mathbb{Z}_{12} are maximal.
- 8. Repeat Problem #7 with the ring \mathbb{Z}_7 .
- 9. In Problem #7, we saw that \mathbb{Z}_{12} has exactly two maximal ideals.
 - (a) Verify that \mathbb{Z}_{20} has exactly two maximal ideals.
 - (b) Verify that \mathbb{Z}_{28} has exactly two maximal ideals.
 - (c) Verify that \mathbb{Z}_{18} has exactly two maximal ideals.
 - (d) Find a few more values of n for which \mathbb{Z}_n has exactly two maximal ideals.
 - (e) What conjectures do you have?
- 10. Find a ring that has exactly three maximal ideals.
- 11. (a) Verify that 9 is not a unit in \mathbb{Z}_{24} . Then find a maximal ideal of \mathbb{Z}_{24} containing 9.
 - (b) Verify that 10 is *not* a unit in \mathbb{Z}_{35} . Then find a maximal ideal of \mathbb{Z}_{35} containing 10.
 - (c) Find a non-unit in \mathbb{Z}_{30} and a maximal ideal of \mathbb{Z}_{30} containing that non-unit element.
 - (d) Find a non-unit in \mathbb{Z}_{54} and a maximal ideal of \mathbb{Z}_{54} containing that non-unit element.
 - (e) What conjecture do you have?