Abstract Algebra Day 32 Class Work

For the problems below, fix $x^2 \in \mathbb{Z}_3[x]$ and define $\langle x^2 \rangle = \{x^2 \cdot q(x) \mid q(x) \in \mathbb{Z}_3[x]\}.$

- 1. (a) Explain why $2x^7 + x^5 + 2x^4$ is contained in $\langle x^2 \rangle$.
 - (b) Explain why $x^6 + 2x$ is not contained in $\langle x^2 \rangle$.
 - (c) List three more elements of $\mathbb{Z}_3[x]$ that are contained in $\langle x^2 \rangle$.
 - (d) List three more elements of $\mathbb{Z}_3[x]$ that are *not* contained in $\langle x^2 \rangle$.
- 2. Let $\alpha(x)$, $\beta(x) \in \mathbb{Z}_3[x]$ where $\alpha(x) = 2x^7 + x^5 + 2x^4 + 2x + 1$ and $\beta(x) = 2x + 1$. Explain why the cosets $\alpha(x) + \langle x^2 \rangle$ and $\beta(x) + \langle x^2 \rangle$ are equal, i.e., $\alpha(x) + \langle x^2 \rangle = \beta(x) + \langle x^2 \rangle$.

Hint: In $\mathbb{Z}/5\mathbb{Z}$, $a + 5\mathbb{Z} = b + 5\mathbb{Z}$ if and only if... (What about in $\mathbb{Z}_3[x]/\langle x^2 \rangle$?)

- 3. (a) Let $f(x) = x^5 + 2x^2 + x + 2 \in \mathbb{Z}_3[x]$. Find $g(x) \in \mathbb{Z}_3[x]$ of smallest degree such that $\leftarrow \deg g(x) = 1$. $f(x) + \langle x^2 \rangle = g(x) + \langle x^2 \rangle.$
 - (b) Repeat part (a), this time with $f(x) = 2x^9 + x^6 + 2x^3 + 1 \in \mathbb{Z}_3[x]$.
- 4. (a) Find all distinct elements of $\mathbb{Z}_3[x]/\langle x^2 \rangle$, i.e., distinct cosets of $\langle x^2 \rangle$ in $\mathbb{Z}_3[x]$.
 - (b) Find the additive identity and the multiplicative identity of $\mathbb{Z}_3[x]/\langle x^2\rangle$.
 - (c) Elizabeth says: "I found 9 cosets of the form $(ax + b) + \langle x^2 \rangle$. But how do I know for sure that they're all distinct? Why can't, for instance, $(2x+1) + \langle x^2 \rangle = (x+2) + \langle x^2 \rangle$?" How would you respond to Elizabeth?
- 5. (a) Compute $((x+1)+\langle x^2\rangle) \cdot ((2x+1)+\langle x^2\rangle)$ and verify that the product equals $1+\langle x^2\rangle$.
 - (b) Anita says, "Our work in part (a) shows that $(x + 1) + \langle x^2 \rangle$ and $(2x + 1) + \langle x^2 \rangle$ are units." What might she mean?
- 6. The quotient ring $\mathbb{Z}_3[x]/\langle x^2 \rangle$ is finite, so every nonzero element must be either a unit or a zero divisor (i.e., it cannot be neither). For each nonzero element $a(x) + \langle x^2 \rangle$, determine if it's a unit or a zero divisor. Moreover, find a nonzero $b(x) + \langle x^2 \rangle$ such that...
 - For a unit: $(a(x) + \langle x^2 \rangle) \cdot (b(x) + \langle x^2 \rangle) = 1 + \langle x^2 \rangle$.
 - For a zero divisor: $(a(x) + \langle x^2 \rangle) \cdot (b(x) + \langle x^2 \rangle) = 0 + \langle x^2 \rangle.$
- 7. Consider the quotient ring $\mathbb{Z}_2[x]/\langle x^2 \rangle$. (Be careful: The coefficient ring is \mathbb{Z}_2 , not \mathbb{Z}_3 .)
 - (a) Find all distinct elements of $\mathbb{Z}_2[x]/\langle x^2 \rangle$, i.e., cosets $f(x) + \langle x^2 \rangle$ where $f(x) \in \mathbb{Z}_2[x]$. \leftarrow There are 4 cosets.
 - (b) Construct the addition and multiplication tables for $\mathbb{Z}_2[x]/\langle x^2\rangle$.
 - (c) Is $\mathbb{Z}_2[x]/\langle x^2 \rangle$ a field? Why or why not?
- 8. (a) How many distinct elements does $\mathbb{Z}_5[x]/\langle x^2 \rangle$ contain?
 - (b) How about $\mathbb{Z}_7[x]/\langle x^2\rangle$?

 $\leftarrow \text{ i.e., } \langle x^2 \rangle \text{ is the principal} \\ \text{ ideal generated by } x^2.$

Ans: No. (Why not?)

- (c) How about $\mathbb{Z}_{11}[x]/\langle x^2 \rangle$?
- (d) How about $\mathbb{Z}_{101}[x]/\langle x^2\rangle$?
- (e) How about $\mathbb{Z}_p[x]/\langle x^2 \rangle$, where p is prime?

 $\leftarrow \text{ There are } p^2 \text{ cosets.}$

- 9. (a) Repeat Problem #8, but replace $\langle x^2 \rangle$ with $\langle x^3 \rangle$.
 - (b) Repeat Problem #8, but replace $\langle x^2 \rangle$ with $\langle x^n \rangle$, where n is a positive integer.
- 10. Explore the quotient ring $\mathbb{Z}_3[x]/\langle x^2+1\rangle$, where $\langle x^2+1\rangle = \{(x^2+1)\cdot q(x) \mid q(x)\in\mathbb{Z}_3[x]\}$.
 - (a) Find all distinct elements of $\mathbb{Z}_3[x]/\langle x^2+1\rangle$, i.e., distinct cosets of $\langle x^2+1\rangle$ in $\mathbb{Z}_3[x]$. \leftarrow There are 9 cosets.
 - (b) For each nonzero element $a(x) + \langle x^2 + 1 \rangle$, determine if it's a unit or a zero divisor.
 - (c) Moreover, find a nonzero $b(x) + \langle x^2 + 1 \rangle$ such that...
 - For a unit: $(a(x) + \langle x^2 + 1 \rangle) \cdot (b(x) + \langle x^2 + 1 \rangle) = 1 + \langle x^2 + 1 \rangle.$
 - For a zero divisor: $(a(x) + \langle x^2 + 1 \rangle) \cdot (b(x) + \langle x^2 + 1 \rangle) = 0 + \langle x^2 + 1 \rangle.$