Abstract Algebra Day 29 Class Work

- 1. Consider $f(x) = 4x^3 + 5x^2 + 2$ and $q(x) = 3x^2 + 5$ in $\mathbb{Z}_7[x]$.
 - (a) Use long division to compute the quotient q(x) and remainder r(x) when dividing Ans: q(x) = 6x + 4, r(x) = 5x + 3f(x) by g(x). Keep in mind that the coefficients are in \mathbb{Z}_7 .
 - (b) Verify that your result in part (a) satisfies the division algorithm for polynomials.
- 2. Consider $f(x) \in \mathbb{R}[x]$ where

$$f(x) = (x-2) \cdot (7432x^{3914} - 652x^{1842} + 37x^{953} + 6x^{75} - 4321x^{59} + 1023).$$

Explain why f(2) = 0.

- 3. Let $f(x) \in \mathbb{R}[x]$ and suppose x-2 is a factor of f(x), i.e., $f(x) = (x-2) \cdot q(x)$ for some $q(x) \in \mathbb{R}[x]$. Explain why f(2) = 0.
- 4. Let $f(x) = 4x^3 9x^2 + 5x 6 \in \mathbb{R}[x]$.
 - (a) Compute f(2) and verify that f(2) = 0.
 - (b) What does your result in part (a) say about how f(x) factors?
 - (c) Use long division to compute the quotient q(x) and remainder r(x) when dividing \leftarrow What should r(x) be? f(x) by x-2. Explain how this confirms your answer from part (b).
- 5. **Prove:** Let $f(x) \in \mathbb{R}[x]$. If f(2) = 0, then $f(x) = (x-2) \cdot q(x)$ for some $q(x) \in \mathbb{R}[x]$. \leftarrow Converse of Problem #3.

Hint: Use the division algorithm for polynomials to write $f(x) = (x-2) \cdot q(x) + r(x)$. What can you say about the remainder r(x)?

- 6. Consider $f(x) = 5x^{672} + 2x^{359} + 4x^{101} + x^{77} + 3x^{23} + 6$ in $\mathbb{Z}_7[x]$.
 - (a) Show that x 1 is a factor of f(x).
 - (b) Show that x + 1 is not a factor of f(x).
- 7. (a) Find the remainder when $f(x) = 5x^{451} + 11x^{274} + 1$ is divided by x 1 in $\mathbb{Z}_{13}[x]$. **Hint:** Use the division algorithm for polynomials.
 - (b) Find the remainder when x^{50} is divided by x + 2 in $\mathbb{Z}_5[x]$.
- 8. (a) Find $p(x), q(x) \in \mathbb{Z}_{10}[x]$, both with degree 1, such that $p(x) \cdot q(x) = x + 7$.
 - (b) What if p(x) and q(x) must each have degree greater than 1? Do such polynomials exist in $\mathbb{Z}_{10}[x]$? If so, find them. If not, explain why not.
- 9. Let $f(x) = x^3$ and g(x) = 2x in $\mathbb{Z}[x]$.
 - (a) Explain why there does not exist $q(x), r(x) \in \mathbb{Z}[x]$ such that $x^3 = 2x \cdot q(x) + r(x)$, with either r(x) = 0 or deg $r(x) < \deg q(x)$.
 - (b) Does your answer in part (a) contradict the division algorithm for polynomials?

Ans: Remainder = 4.

Hint: Compute f(1).

← Bonus fun!

Ans: No. (Why not?)

Definition. A ring element r is said to be *nilpotent* if $r^n = 0$ for some positive integer n. $\leftarrow \text{ In any ring, 0 is nilpotent, since } 0^1 = 0.$ **Example:** $3 \in \mathbb{Z}_{81}$ is nilpotent, because $3^4 = 0$ in \mathbb{Z}_{81} .

- 10. (a) Find all nilpotent elements of Z₉. Ans: 0, 3, and 6.
 (b) Find all nilpotent elements of Z₁₀; of Z₁₂; of Z₃₆.
 (c) Any conjectures about which Z_m has nonzero nilpotent elements?
 11. In the polynomial ring Z₄[x], 1 and 3 are units and 0 and 2 are nilpotent elements. ← Do you see why?
 - (a) In $\mathbb{Z}_4[x]$, find five more units and five more nilpotent elements.
 - (b) Explain why $\mathbb{Z}_4[x]$ has infinitely many units and infinitely many nilpotent elements.