Abstract Algebra Day 28 Class Work Solutions

- 1. Consider the polynomials $f(x) = 3x^4 7x^2 + 4$ and $g(x) = 4x^2 + 1$ in $\mathbb{Z}[x]$.
 - (a) Find the sum f(x) + g(x) and the product $f(x) \cdot g(x)$.

Solution. We have $f(x) + g(x) = 3x^4 - 3x^2 + 5$ and $f(x) \cdot g(x) = 12x^6 - 25x^4 + 9x^2 + 4$. See Example 28.1 in the textbook for descriptions of how to obtain these results.

(b) Verify that the sum and product that you found are also in $\mathbb{Z}[x]$.

Solution. As seen in part (a), the sum f(x) + g(x) is a polynomial whose coefficients are in \mathbb{Z} . The same is true for the product $f(x) \cdot g(x)$. Thus, both are in $\mathbb{Z}[x]$.

- (c) Convince yourself that $\mathbb{Z}[x]$ is closed under addition and multiplication.
- 2. (a) Verify that $\mathbb{Z}[x]$ is a *commutative* ring, focusing on the following questions. You can "skim" through the other ring properties.
 - What are the additive and multiplicative identities of $\mathbb{Z}[x]$?
 - What's the additive inverse of, say, $f(x) = 3x^4 7x^2 + 4$?
 - Do f(x) + g(x) = g(x) + f(x) and $f(x) \cdot g(x) = g(x) \cdot f(x)$?

Solution. The additive and multiplicative identities of $\mathbb{Z}[x]$ are the constant polynomials 0 and 1, respectively. Every polynomial in $\mathbb{Z}[x]$ has an additive inverse in $\mathbb{Z}[x]$. With $f(x) = 3x^4 - 7x^2 + 4$, for example, we have $-f(x) = -3x^4 + 7x^2 - 4$, where f(x) + (-f(x)) = 0 and -f(x) + f(x) = 0.

Although we won't provide a rigorous proof, it turns out that $\mathbb{Z}[x]$ is a ring. In fact, it's a *commutative* ring, since $\alpha(x) \cdot \beta(x) = \beta(x) \cdot \alpha(x)$ for all $\alpha(x), \beta(x) \in \mathbb{Z}[x]$. As an exercise, try computing $g(x) \cdot f(x)$ using the polynomials in Problem #1 above and compare the product to $f(x) \cdot g(x)$.

(b) Anita says, " \mathbb{Z} is a subring of $\mathbb{Z}[x]$." Do you agree or disagree with her? Explain.

Solution. Agree. The ring of integers \mathbb{Z} is a subring of $\mathbb{Z}[x]$. Here, we're viewing the elements of \mathbb{Z} (such as 0, 1, -3, and 6) as constant polynomials.

(c) Explain why x does not have a multiplicative inverse in $\mathbb{Z}[x]$.

Solution. There is no polynomial q(x) such that $x \cdot q(x) = 1$. While it's true that $x \cdot \frac{1}{x} = 1$, we note that $\frac{1}{x}$ is *not* a polynomial. Therefore, x^{-1} does not exist in $\mathbb{Z}[x]$. (For a more rigorous argument, see Theorem 28.12 and its proof in the textbook.)

(d) Elizabeth says, " $\mathbb{Z}[x]$ is not a field, and neither is $\mathbb{R}[x]$." What do you think?

Solution. Agree. The nonzero polynomial $x \in \mathbb{Z}[x]$ is *not* a unit, i.e., it doesn't have a multiplicative inverse, as shown in part (c). Thus, $\mathbb{Z}[x]$ is *not* a field. The same argument shows that $\mathbb{R}[x]$ is not a field either.

- 3. Consider the polynomials $f(x) = 3x^{15} + 4x^3 + 2$ and $g(x) = 6x^8 + 5x + 3$.
 - (a) In Z[x], compute the degrees of f(x), g(x), and f(x) ⋅ g(x). How are they related?
 Solution. In Z[x], we have deg f(x) = 15 and deg g(x) = 8. Moreover,
 - $f(x) \cdot g(x) = (3x^{15})(6x^8) + (\text{lower degree terms})$ $= (3 \cdot 6)x^{15+8} + (\text{lower degree terms})$ $= 18x^{23} + (\text{lower degree terms})$

so that the degree of $f(x) \cdot g(x)$ is 23, which is the sum of 15 and 8.

Becall: In a *field* every

nonzero element is a unit.

 $\leftarrow \text{ You don't actually have} \\ \text{ to compute } f(x) \cdot g(x).$

← No proof required.

Ans: Still 0 and 1, which are *constant* polynomials.

(b) Same question, but in $\mathbb{Z}_7[x]$.

Solution. In $\mathbb{Z}_7[x]$, we have the same results as in $\mathbb{Z}[x]$. The only difference is that the highest degree term of $f(x) \cdot g(x)$ is $4x^{23}$ instead of $18x^{23}$, because 18 = 4 in \mathbb{Z}_7 .

(c) Same question, but in $\mathbb{Z}_9[x]$.

Solution. In $\mathbb{Z}_9[x]$, we still have deg f(x) = 15 and deg g(x) = 8. But

 $f(x) \cdot g(x) = (3x^{15} + 4x^3 + 2)(6x^8 + 5x + 3)$ = $18x^{23} + 15x^{16} + (\text{lower degree terms})$ = $0x^{23} + 15x^{16} + (\text{lower degree terms})$ = $15x^{16} + (\text{lower degree terms})$

so that the degree of $f(x) \cdot g(x)$ is 16. This occurs, because 3 and 6 are zero divisors in \mathbb{Z}_9 . Since $3 \cdot 6 = 0$ in \mathbb{Z}_9 , the leading term $f(x) \cdot g(x)$ vanishes when its coefficient is reduced modulo 9.

(d) What's going on here? Can you *justify* it?

Solution. See Problem #4.

4. Consider the following theorem:

Theorem. Let $f(x), g(x) \in R[x]$ where R is an integral domain, with $f(x), q(x) \neq 0$. Then deg $f(x) \cdot q(x) = \deg f(x) + \deg q(x)$. Recall: An integral domain doesn't contain zero divisors.

(a) Give an example that illustrates the theorem.

Solution. See Problem #3, parts (a) and (b).

(b) Explain why the theorem is true. In particular, why must R be an integral domain?

PROOF. Suppose f(x) and g(x) have degrees m and n, respectively. Then

$$f(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0$$
 and $g(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0$,

where the coefficients a_i and b_i are in R, and a_m , $b_n \neq 0$. Then,

 $f(x) \cdot g(x) = (a_m x^m)(b_n x^n) + \text{(lower degree terms)}$ $= a_m b_n x^{m+n} + \text{(lower degree terms)}.$

Since R is an integral domain and a_m , $b_n \neq 0$, we have $a_m b_n \neq 0$ as well. Thus, $\deg f(x) \cdot g(x) = m + n$, which equals $\deg f(x) + \deg g(x)$ as desired.

5. (a) Find all units in $\mathbb{Z}_7[x]$, i.e., $f(x), g(x) \in \mathbb{Z}_7[x]$ such that $f(x) \cdot g(x) = 1$.

Solution. The only units in $\mathbb{Z}_7[x]$ are 1, 2, 3, 4, 5, 6, where we view these as constant polynomials. Note that these are precisely the units of the coefficient ring \mathbb{Z}_7 .

(b) Find all units in $\mathbb{Z}[x]$; in $\mathbb{R}[x]$.

Solution. The only units in $\mathbb{Z}[x]$ are 1 and -1; again, these are units of \mathbb{Z} . The only units in $\mathbb{R}[x]$ are the nonzero real numbers, i.e., the units of \mathbb{R} .

(c) Prove: If R is an integral domain, then the only units in R[x] are the units of R.
Hint: Suppose f(x) ⋅ g(x) = 1. Then deg f(x) and deg g(x) must be...

Ans to (c): $\deg f(x) \cdot g(x) = 16.$

Ans: 1, 2, 3, 4, 5, 6.

← Thus, non-constant polvnomials are *not* units.

Hint: See Problem #3.

PROOF. Suppose $f(x) \in R[x]$ is a unit. We will show that f(x) is a constant polynomial so that it is an element of R. Since f(x) is a unit, there exists $g(x) \in R[x]$ such that $f(x) \cdot g(x) = 1$. Thus,

$$\deg f(x) + \deg g(x) = \deg f(x) \cdot g(x) = \deg(1) = 0.$$

Since deg f(x) and deg g(x) are non-negative integers whose sum is 0, they must both be 0. This implies that f(x) is a constant polynomial, as desired.

6. (a) Find all zero divisors in $\mathbb{Z}_7[x]$; in $\mathbb{Z}[x]$; in $\mathbb{R}[x]$.

Solution. $\mathbb{Z}_7[x]$, $\mathbb{Z}[x]$, and $\mathbb{R}[x]$ have no zero divisors. For instance, we cannot find a pair of nonzero polynomials $f(x), g(x) \in \mathbb{Z}_7[x]$ such that $f(x) \cdot g(x) = 0$.

(b) **Prove:** If R is an integral domain, then R[x] is an integral domain.

Hint: Let $f(x), g(x) \in R[x]$ be nonzero. Why must $f(x) \cdot g(x)$ also be nonzero?

Solution. The proof in Problem #4(b) shows that the product of two nonzero polynomials in R[x] is also nonzero. This confirms that R[x] is an integral domain.

7. Our friends are discussing the degree of the constant 0.

Anita: "Why can't we say deg(0) = 0? The zero polynomial is a constant, right?"

Elizabeth: "But the theorem from Problem #4 fails if deg(0) = 0."

What might Elizabeth mean?

8. (a) In $\mathbb{Z}_9[x]$, find f(x) such that $(1+3x) \cdot f(x) = 1$.

Solution. We have

$$(1+3x) \cdot (1+6x) = 1 = 9x + 18x^2 = 1 + 0x + 0x^2 = 1,$$

where we reduced the coefficients 9 and 18 in \mathbb{Z}_9 . Thus, f(x) = 1 + 6x.

(b) In $\mathbb{Z}_6[x]$, find a nonzero f(x) such that $(2+4x) \cdot f(x) = 0$.

Solution. We have

 $(2+4x) \cdot 3x = 6x + 12x^2 = 0,$

so that 2 + 4x and 3x are zero divisors in $\mathbb{Z}_6[x]$.

(c) How are $\mathbb{Z}_9[x]$ and $\mathbb{Z}_6[x]$ different from $\mathbb{Z}_7[x]$, $\mathbb{Z}[x]$, and $\mathbb{R}[x]$? Explain.

Solution. $\mathbb{Z}_9[x]$ has a unit that is *not* a constant polynomial. $\mathbb{Z}_6[x]$ has zero divisors. Neither of these is possible in $\mathbb{Z}_7[x]$, $\mathbb{Z}[x]$, and $\mathbb{R}[x]$

9. (Some Food for Thought)

- (a) Find all units in $\mathbb{Z}_9[x]$.
- (b) Find all zero divisors in $\mathbb{Z}_6[x]$.

10. (More Food for Thought)

- (a) In $\mathbb{Z}_9[x]$, find f(x) such that $(1-3x) \cdot f(x) = 1$.
- (b) Same question, but in $\mathbb{Z}_{27}[x]$; in $\mathbb{Z}_{81}[x]$; in $\mathbb{Z}_{3^n}[x]$.

 \leftarrow Are there any?

Hint: We have $x^2 \cdot 0 = 0$. Take the degree of both sides.