Abstract Algebra Day 27 Class Work

- 1. We just saw that \mathbb{Z} is an integral domain, while \mathbb{Z}_{12} is not.
 - (a) Find other examples of an integral domain.
 - (b) Find some non-examples, i.e., commutative rings that are *not* an integral domain.
- 2. Let α and β be elements of an integral domain. If $\alpha \cdot \beta = 0$, what conclusion can you make **Ans:** $\alpha = 0$ or $\beta = 0$ (or possibly both). about α and β ? Explain your reasoning.
- 3. (Review of Group Theory) In the multiplicative group U_{17} :
 - (a) Find the multiplicative inverse of 6.
 - (b) Use your answer in part (a) to solve the equation $6x = 10 \pmod{17}$.
- 4. (a) In a multiplicative group G, explain why $ab = ac \implies b = c$.
 - (b) In the ring \mathbb{Z} , explain why

$$ab = ac, \ a \neq 0 \implies b = c.$$

Remark: You can't use the same proof as in part (a), since most $a \in \mathbb{Z}$ do not have a multiplicative inverse. Instead, use the fact that \mathbb{Z} is an integral domain.

- (c) Use a counter-example to show how (\clubsuit) is false in \mathbb{Z}_{12} . How does your proof from part (b) fail when working in \mathbb{Z}_{12} ?
- 5. (a) Find all the units in \mathbb{Z}_7 . Do the same in \mathbb{R} , the set of real numbers.
 - (b) Elizabeth says, " \mathbb{Z}_7 and \mathbb{R} are *almost* multiplicative groups." What might she mean?

Definition: A commutative ring is called a *field* if every nonzero element is a unit. **Key:** In a field, we can always "divide" (i.e., multiply by a^{-1}), except when a = 0.

- 6. In Problem #5, we saw that \mathbb{Z}_7 and \mathbb{R} are fields.
 - (a) Come up with a few other examples of a field.
 - (b) Come up with some non-examples, i.e., commutative rings that are *not* a field.
 - (c) For each field in part (a), determine if it's an integral domain. Any conjecture?
 - (d) Find an integral domain that's not a field.
- 7. Prove: Every field is an integral domain.
- 8. Consider the ring $R = \mathbb{Z}_5[i] = \{a + bi \mid a, b \in \mathbb{Z}_5\}$. (Here, $i = \sqrt{-1}$ so that $i^2 = -1$.)
 - (a) How many elements are in R? Explain your reasoning.
 - (b) The element $1 + 4i \in R$ is a unit. Find its multiplicative inverse.
 - (c) The element $\alpha = 1 2i \in R$ is a zero divisor. Find a nonzero $\beta \in R$ where $\alpha \cdot \beta = 0$.
 - (d) Is R an integral domain, a field, or neither?

Ans: $6^{-1} = 3$.

Ans: x = 13.

()

 \leftarrow i.e., re-prove left cancellation in a group

Hint: If ab = ac, then $\boxed{???} = 0.$

Recall: A unit is a ring element that has a multiplicative inverse

 \leftarrow Can you find more?

Ans: 25 elements

- 9. A ring element $a \in R$ is called a *self inverse under multiplication* if $a^2 = 1$.
 - (a) Find all self inverses in \mathbb{Z} .
 - (b) Find all self inverses in \mathbb{Z}_7 .
 - (c) Find all self inverses in \mathbb{Z}_{12} . (**Hint:** It's not just 1 and -1 = 11.)
 - (d) Find all self inverses in \mathbb{Z}_{16} .
 - (e) Find all self inverses in \mathbb{Z}_{13} .
 - (f) Any conjectures?
- 10. Determine all elements of an integral domain that are self inverses under multiplication. Explain your reasoning.
- 11. (Some Food for Thought) Consider the polynomial $f(x) = x^2 6x + 8$.
 - (a) Factor the polynomial and use it to solve $x^2 6x + 8 = 0$ in \mathbb{Z} .
 - (b) Verify your result in part (a) by substituting each solution into f(x).
 - (c) Find all solutions to $x^2 6x + 8 = 0$ in \mathbb{Z}_{15} . (Careful: There are more than two.)
 - (d) Anita says, "We found more than two solutions, since \mathbb{Z}_{15} isn't an integral domain." What might she mean?
 - (e) (Challenge) Find all solutions to $x^2 6x + 8 = 0$ in \mathbb{Z}_{105} .

Ans: 1 and -1.

 \leftarrow Yikes!

Ans: x = 2 or 4.