4K

7K

Abstract Algebra Day 25 Class Work

- 1. Consider $\lambda : U_{13} \to U_{13}$ where $\lambda(a) = a^3$ for all $a \in U_{13}$. Let $K = \ker \lambda = \{1, 3, 9\}$. $\leftarrow \lambda$ is a homomorphism. (a) Find all distinct cosets of K in U_{13} . (b) How do your cosets compare with how λ partitions U_{13} ? Are you surprised by this? \leftarrow I'm (still) surprised! 2. Our friends just finished working on Problem #1. Here's their recap: **Elizabeth:** So it looks like the cosets of $K = \ker \lambda$ partition the domain in the same way that the homomorphism λ does. Anita: Yeah, which is why the subsets created by λ are equal-sized. What might they mean? Explain their statements. 3. Consider again $\lambda: U_{13} \to U_{13}$ where $\lambda(a) = a^3$ for all $a \in U_{13}$. Note that $\lambda(2) = 2^3 = 8$. (a) Using the cosets from Problem #1, find all other $a \in U_{13}$ such that $\lambda(a) = 8$. Ans: a = 5 and 6(b) Verify your answer in part (a) by computing $\lambda(a) = a^3$ for each $a \in U_{13}$ you found. 4. Suppose $\varphi: U_{17} \to U_{17}$ is a homomorphism with kernel $K = \{1, 4, 13, 16\}$. (a) (**Optional**) Verify that K is indeed a subgroup of the domain U_{17} . (b) Find all distinct cosets of K in U_{17} . (c) Suppose $\varphi(10) = 4$. Find all other $a \in U_{17}$ such that $\varphi(a) = 4$. How do you know Ans: a = 6, 11, and 7. that you've found *all* such elements? 5. Let $\theta: G \to H$ be a group homomorphism with $K = \ker \theta$. Let $g \in G$ such that $\theta(g) = h$ where $h \in H$. Given $a \in G$, prove each of the following. (a) If $a \in qK$, then $\theta(a) = h$ (i.e., every element of coset qK maps to h). **Hint:** An element $k \in K$ satisfies $\theta(k) = \varepsilon_H$. (b) (**Optional**) If $a \notin gK$, then $\theta(a) \neq h$ (i.e., only the elements of gK map to h). \leftarrow You might want to prove the contrapositive here. (c) Elizabeth says, "In parts (a) and (b), we proved what I noticed in Problem #2." What might she mean? 6. Consider yet again $\lambda: U_{13} \to U_{13}$ where $\lambda(a) = a^3$ for all $a \in U_{13}$ with kernel K. We've seen that it has image im $\lambda = \{1, 8, 12, 5\}$. And in Problem #1, you found that the distinct cosets of K are 1K, 2K, 4K, and 7K. (a) Create the group tables for U_{13}/K and im λ . 1K2K4K127K1 8 5 1K1 8 2K
 - (b) Verify that the two tables in part (a) are essentially the same. How are the groups Ans: They're isomorphic. U_{13}/K and im λ related?

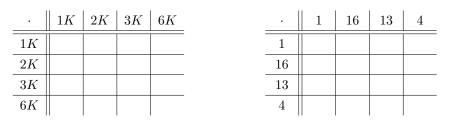
12

5

- 7. Consider again the homomorphism $\varphi: U_{17} \to U_{17}$ with kernel $K = \{1, 4, 13, 16\}$. And as in Problem #4, suppose $\varphi(10) = 4$.
 - (a) Find the value of $\varphi(a)$ for all $a \in U_{17}$.

Hint: φ is operation preserving, i.e., $\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$, for all $a, b \in U_{17}$.

- (b) Find the image im φ .
- (c) Create the group tables for U_{17}/K and $\operatorname{im} \varphi$.



- (d) Verify that the two tables in part (c) are essentially the same. How are the groups U_{17}/K and im φ related?
- (e) (**Optional**) Find a *formula* for the function φ and verify that it's a homomorphism.
- 8. Let $\gamma: U_{31} \to U_{31}$ be a homomorphism with kernel $K = \{1, 5, 6, 25, 26, 30\}$.
 - (a) Find all distinct cosets of K in U_{31} .
 - (b) Suppose $\gamma(10) = 2$. Find all other $a \in U_{31}$ such that $\gamma(a) = 2$.
 - (c) Find the value of $\gamma(a)$ for all $a \in U_{31}$.
 - (d) Find the image im γ .
 - (e) Create and compare the group tables for U_{31}/K and im γ .
- 9. Consider $\delta : G(\mathbb{Z}_{10}) \to U_{10}$ where $\delta(\alpha) = \det \alpha$ for all $\alpha \in G(\mathbb{Z}_{10})$.

Recall: $G(\mathbb{Z}_{10})$ is the multiplicative group of invertible 2×2 matrices with entries in \mathbb{Z}_{10} .

- (a) List a few elements of the kernel K.
- (b) How does δ partition the domain $G(\mathbb{Z}_{10})$?
- (c) Describe all distinct cosets of K.
- (d) Complete the group tables for $G(\mathbb{Z}_{10})/K$ and $\operatorname{im} \delta$. How do the two tables compare?

im $\varphi = \{1, 16, 13, 4\}.$

Ans for (b):

Ans for (d): im $\gamma = \{1, 2, 4, 8, 16\}.$