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Abstract Algebra
Day 22 Class Work Solutions

Below, we’ll consider the subgroup H = 〈10〉 of the (multiplicative) group U37.

1. (a) Quick, how many elements are in U37? ← Yes, 37 is prime.

Solution. Since 37 is prime, U37 = {1, 2, 3, . . . , 35, 36}. It has 36 elements.

(b) Verify that 〈10〉 = {1, 10, 26} by computing the powers of 10 modulo 37.

Solution. By definition, 〈10〉 = {10k | k ∈ Z}, i.e., the set of all integer powers of 10.
Reducing mod 37, we have 101 = 10, 102 = 26, 103 = 1. Thus, 〈10〉 = {1, 10, 26}.

(c) How many distinct cosets of H are there? How do you know? Ans: 12 cosets.

Solution. U37 and H have 36 and 3 elements, respectively. Thus, there are 36/3 = 12
distinct cosets of H.

2. Suggestion: Use a calculator for parts (a) and (b) below.

(a) Compute the cosets 4H and 11H. Ans: 4H = {4, 3, 30}.

Solution. We have

4H = {4·1, 4·10, 4·26} = {4, 3, 30} and 11H = {11·1, 11·10, 11·26} = {11, 36, 27}.

(b) Compute the coset product 4H · 11H without using the coset multiplication shortcut,
and verify that it is, indeed, equal to 44H.

Note: It might help to write 4H = {4, 3, −7} and 11H = {11, −1, −10}. (Why?)

Solution. Writing 4H and 11H as above allows us to work with numbers that are
smaller in absolute value. We have. . .

4H · 11H = {4, 3, −7} · {11, −1, −10}
= {4 · 11, 4 · (−1), 4 · (−10), 3 · 11, 3 · (−1), 3 · (−10), −7 · 11, −7 · (−1), −7 · (−10)}
= {7, 33, 34, 33, 34, 7, 34, 7, 33}
= {7, 33, 34}

And 44H = 7H = {7 · 1, 7 · 10, 7 · 26} = {7, 33, 34} so that 4H · 11H = 44H.
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You may use the coset multiplication shortcut for the rest of the problems! ← i.e., aH · bH = (ab)H.

3. Find the coset product 1H · 11H. (Optional: Compute this without using the shortcut.)
What does this say about the role of 1H in U37/H?

Solution. We have 1H · 11H = 11H, so that 1H is the identity element in U37/H.

4. (a) Anita claims that 2H and 19H in U37/H are inverses of each other. Do you agree or
disagree with her? Explain.

Solution. Agree. Using the shortcut, we have 2H ·19H = (2 ·19)H = 1H. Thus, the
product of 2H and 19H is the identity element 1H so that 2H and 19H are indeed
inverse of each other.

(b) Find the inverse of 15H in U37/H. How about the inverse of 28H?

Solution. We have 15 · 5 = 1 (mod 37). Thus, 15H · 5H = (15 · 5)H = 1H, and
5H is the inverse of 15H. Similarly, the inverse of 28H is 4H, because 28H · 4H =
(28 · 4)H = 1H. Symbolically, we write (28H)−1 = 4H.
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5. Verify that U37/H with coset multiplication satisfies the group properties. Note that. . .

• Since U37 is commutative, the shortcut aH · bH = (ab)H holds in U37/H.

• You may assume that coset multiplication is associative. ← Proved in Chapter 21.

Solution. Below is a proof outline. (See Chapter 22 reading for a complete proof.)

Since U37/H satisfies the coset multiplication shortcut. . .

• U37/H is closed under coset multiplication, i.e., aH · bH = (ab)H ∈ U37/H.

• Coset multiplication is associative. (See Chapter 21 reading.)

• U37/H contains an identity element 1H such that 1H · aH = (1 · a)H = aH.

• Each aH ∈ U37/H has an inverse (aH)−1 = a−1H ∈ U37/H where

aH · (aH)−1 = aH · a−1H = (a · a−1)H = 1H.

Here, a−1 is the inverse of a in U37.

6. (a) Find all a ∈ U37 such that aH = 1H.

Solution. We have H = {1, 10, 26}. Thus, 1H = 10H = 26H.

(b) Find the order of 6H in U37/H. Ans: ord(6H) = 4.

Note: Feel free to use the shortcut to compute the powers of 6H.

Solution. We have. . .

(6H)1 = 61H 6= 1H

(6H)2 = 62H = 36H 6= 1H

(6H)3 = 63H = 31H 6= 1H

(6H)4 = 64H = 1H

Thus, n = 4 is the smallest positive exponent with (6H)n = 1H. Hence, ord(6H) = 4.

(c) Verify that ord(34H) = 3 in U37/H. It might help to write 34H = (−3)H.

Solution. We have. . .

(34H)1 = 341H 6= 1H

(34H)2 = 342H = 9H 6= 1H

(34H)3 = 343H = 10H = 1H

Therefore, ord(34H) = 3.

(d) Find the order of 4H in U37/H. Ans: ord(4H) = 6.

Solution. ord(4H) = 6. Proceed as in parts (b) and (c).

(e) In U37, it turns out that: ord(6) = 4, ord(34) = 9, ord(4) = 18. Any conjectures?

Solution. See Problem #7 below.

7. (a) Let a ∈ U37 with ord(a) = 12. Show that (aH)12 = 1H. What does this say about
the order of aH in U37/H?

Solution. Since ord(a) = 12, we have a12 = 1 in U37. Now in U37/H, we have

(aH)12 = a12H = 1H.

This doesn’t mean that the order of aH is equal to 12. But it does mean that ord(aH)
is a divisor of 12.
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(b) Prove: ord(aH) in U37/H is a divisor of ord(a) in U37 for all a ∈ U37.

Proof. Let n = ord(a). Then in U37, we have an = 1. Now in U37/H, we have

(aH)n = anH = 1H.

Thus, ord(aH) is a divisor of n, as desired. �

8. Recall that U13 is cyclic with generator 2, i.e., U13 = 〈2〉. With the subgroup H = {1, 3, 9}
of U13, verify that U13/H is cyclic with generator 2H.

Proof. Let aH ∈ U13/H where a ∈ U13. Since U13 = 〈2〉, we have a = 2n for some n ∈ Z.
Then aH = 2nH = (2H)n, so that aH can be written as an integer power of 2H. Hence,
U13/H is cyclic with generator 2H. �

9. Note that Z12 is cyclic with generator 1, i.e., Z12 = 〈1〉. With the subgroup H = {0, 4, 8}
of Z12, verify that Z12/H is cyclic with generator 1 +H.

Solution. I’ll leave it to you to rewrite the proof in Problem #8 for an additive group.

10. Consider the subgroup H = {1, 7} of U16.

(a) Quick, how many distinct cosets of H are there? Explain how you know.

(b) Find the quotient group U16/H.

(c) Create the table for U16/H and verify that it’s a group under coset multiplication.

(d) Find the order of each aH ∈ U16/H. Is the group cyclic?

11. Consider the subgroup H = {1, 9} of U16.

(a) Find the quotient group U16/H and determine if it’s cyclic.

(b) Compare your work in part (a) with Problem #10. Are you surprised by the results?

(c) U16 has another 2-element subgroup K. Find it and determine if U16/K is cyclic.

12. (An Important Proof) Let G be a commutative group, H its subgroup, and a, b ∈ G. ← i.e., The shortcut holds
when G is commutative.Define the coset product by

aH · bH = {α · β | α ∈ aH, β ∈ bH}.

Then show that aH · bH = (ab)H.

Proof. First, we will show that (ab)H ⊆ aH · bH. Let g ∈ (ab)H so that g = (ab)h for
some h ∈ H. Then, g = (ab)h = (aε)(bh) ∈ aH · bH. Thus, (ab)H ⊆ aH · bH.

Next, we will show that aH · bH ⊆ (ab)H. Let α · β ∈ aH · bH, where α ∈ aH and
β ∈ bH. Thus, α = ah and β = bk for some h, k ∈ H. Since G is commutative,

α · β = (ah)(bk) = a(hb)k = a(bh)k = (ab)(hk),

where hk ∈ H as H is closed. Thus α · β ∈ (ab)H, so that aH · bH ⊆ (ab)H. Combined
with (ab)H ⊆ aH · bH, we conclude that aH · bH = (ab)H. �

13. (Some Food for Thought) What about non-commutative groups? In Chapter 21 Exer-
cises, we considered these subgroups of D4: Z = {ε, r180} and H = {ε, v}. We found that
D4/Z satisfied the shortcut, but D4/H did not. Can you explain what’s going on?


