Abstract Algebra Day 22 Class Work Solutions

Below, we'll consider the subgroup $H = \langle 10 \rangle$ of the (multiplicative) group U_{37} .

1. (a) Quick, how many elements are in U_{37} ?

Solution. Since 37 is prime, $U_{37} = \{1, 2, 3, \dots, 35, 36\}$. It has 36 elements.

(b) Verify that $\langle 10 \rangle = \{1, 10, 26\}$ by computing the powers of 10 modulo 37.

Solution. By definition, $\langle 10 \rangle = \{10^k \mid k \in \mathbb{Z}\}$, i.e., the set of all integer powers of 10. Reducing mod 37, we have $10^1 = 10$, $10^2 = 26$, $10^3 = 1$. Thus, $\langle 10 \rangle = \{1, 10, 26\}$.

(c) How many distinct cosets of H are there? How do you know?

Solution. U_{37} and H have 36 and 3 elements, respectively. Thus, there are 36/3 = 12 distinct cosets of H.

- 2. Suggestion: Use a calculator for parts (a) and (b) below.
 - (a) Compute the cosets 4H and 11H.

Solution. We have

 $4H = \{4 \cdot 1, 4 \cdot 10, 4 \cdot 26\} = \{4, 3, 30\}$ and $11H = \{11 \cdot 1, 11 \cdot 10, 11 \cdot 26\} = \{11, 36, 27\}.$

(b) Compute the coset product $4H \cdot 11H$ without using the coset multiplication shortcut, and verify that it is, indeed, equal to 44H.

Note: It might help to write $4H = \{4, 3, -7\}$ and $11H = \{11, -1, -10\}$. (Why?)

Solution. Writing 4H and 11H as above allows us to work with numbers that are smaller in absolute value. We have...

 $\begin{aligned} 4H \cdot 11H &= \{4, 3, -7\} \cdot \{11, -1, -10\} \\ &= \{4 \cdot 11, 4 \cdot (-1), 4 \cdot (-10), 3 \cdot 11, 3 \cdot (-1), 3 \cdot (-10), -7 \cdot 11, -7 \cdot (-1), -7 \cdot (-10)\} \\ &= \{7, 33, 34, 33, 34, 7, 34, 7, 33\} \\ &= \{7, 33, 34\} \end{aligned}$

And $44H = 7H = \{7 \cdot 1, 7 \cdot 10, 7 \cdot 26\} = \{7, 33, 34\}$ so that $4H \cdot 11H = 44H$.

You may use the coset multiplication shortcut for the rest of the problems!

 $\leftarrow \mathsf{i.e.}, \ aH \cdot bH = (ab)H.$

3. Find the coset product $1H \cdot 11H$. (**Optional:** Compute this *without* using the shortcut.) What does this say about the role of 1H in U_{37}/H ?

Solution. We have $1H \cdot 11H = 11H$, so that 1H is the identity element in U_{37}/H .

4. (a) Anita claims that 2H and 19H in U_{37}/H are inverses of each other. Do you agree or disagree with her? Explain.

Solution. Agree. Using the shortcut, we have $2H \cdot 19H = (2 \cdot 19)H = 1H$. Thus, the product of 2H and 19H is the identity element 1H so that 2H and 19H are indeed inverse of each other.

(b) Find the inverse of 15H in U_{37}/H . How about the inverse of 28H?

Solution. We have $15 \cdot 5 = 1 \pmod{37}$. Thus, $15H \cdot 5H = (15 \cdot 5)H = 1H$, and 5H is the inverse of 15H. Similarly, the inverse of 28H is 4H, because $28H \cdot 4H = (28 \cdot 4)H = 1H$. Symbolically, we write $(28H)^{-1} = 4H$.

 \leftarrow Yes, 37 is prime

Ans: 12 cosets.

Ans: $4H = \{4, 3, 30\}.$

- 5. Verify that U_{37}/H with coset multiplication satisfies the group properties. Note that...
 - Since U_{37} is commutative, the shortcut $aH \cdot bH = (ab)H$ holds in U_{37}/H .
 - You may assume that coset multiplication is associative.

Solution. Below is a proof outline. (See Chapter 22 reading for a complete proof.)

Since U_{37}/H satisfies the coset multiplication shortcut...

- U_{37}/H is closed under coset multiplication, i.e., $aH \cdot bH = (ab)H \in U_{37}/H$.
- Coset multiplication is associative. (See Chapter 21 reading.)
- U_{37}/H contains an identity element 1H such that $1H \cdot aH = (1 \cdot a)H = aH$.
- Each $aH \in U_{37}/H$ has an inverse $(aH)^{-1} = a^{-1}H \in U_{37}/H$ where

 $aH \cdot (aH)^{-1} = aH \cdot a^{-1}H = (a \cdot a^{-1})H = 1H.$

Here, a^{-1} is the inverse of a in U_{37} .

6. (a) Find all $a \in U_{37}$ such that aH = 1H.

Solution. We have $H = \{1, 10, 26\}$. Thus, 1H = 10H = 26H.

(b) Find the order of 6H in U₃₇/H.
Note: Feel free to use the shortcut to compute the powers of 6H.
Solution. We have...

$$(6H)^{1} = 6^{1}H \neq 1H$$

$$(6H)^{2} = 6^{2}H = 36H \neq 1H$$

$$(6H)^{3} = 6^{3}H = 31H \neq 1H$$

$$(6H)^{4} = 6^{4}H = 1H$$

Thus, n = 4 is the smallest positive exponent with $(6H)^n = 1H$. Hence, $\operatorname{ord}(6H) = 4$.

(c) Verify that $\operatorname{ord}(34H) = 3$ in U_{37}/H . It might help to write 34H = (-3)H.

Solution. We have...

$$(34H)^1 = 34^1 H \neq 1H$$

 $(34H)^2 = 34^2 H = 9H \neq 1H$
 $(34H)^3 = 34^3 H = 10H = 1H$

Therefore, $\operatorname{ord}(34H) = 3$.

(d) Find the order of 4H in U_{37}/H .

Solution. ord(4H) = 6. Proceed as in parts (b) and (c).

- (e) In U₃₇, it turns out that: ord(6) = 4, ord(34) = 9, ord(4) = 18. Any conjectures?
 Solution. See Problem #7 below.
- 7. (a) Let $a \in U_{37}$ with $\operatorname{ord}(a) = 12$. Show that $(aH)^{12} = 1H$. What does this say about the order of aH in U_{37}/H ?

Solution. Since $\operatorname{ord}(a) = 12$, we have $a^{12} = 1$ in U_{37} . Now in U_{37}/H , we have

$$(aH)^{12} = a^{12}H = 1H.$$

This doesn't mean that the order of aH is equal to 12. But it does mean that ord(aH) is a divisor of 12.

 \leftarrow Proved in Chapter 21.

Ans: ord(6H) = 4.

Ans: $\operatorname{ord}(4H) = 6$.

(b) **Prove:** $\operatorname{ord}(aH)$ in U_{37}/H is a divisor of $\operatorname{ord}(a)$ in U_{37} for all $a \in U_{37}$. **PROOF.** Let $n = \operatorname{ord}(a)$. Then in U_{37} , we have $a^n = 1$. Now in U_{37}/H , we have

$$(aH)^n = a^n H = 1H.$$

Thus, $\operatorname{ord}(aH)$ is a divisor of n, as desired.

8. Recall that U_{13} is cyclic with generator 2, i.e., $U_{13} = \langle 2 \rangle$. With the subgroup $H = \{1, 3, 9\}$ of U_{13} , verify that U_{13}/H is cyclic with generator 2H.

PROOF. Let $aH \in U_{13}/H$ where $a \in U_{13}$. Since $U_{13} = \langle 2 \rangle$, we have $a = 2^n$ for some $n \in \mathbb{Z}$. Then $aH = 2^n H = (2H)^n$, so that aH can be written as an integer power of 2H. Hence, U_{13}/H is cyclic with generator 2H.

9. Note that \mathbb{Z}_{12} is cyclic with generator 1, i.e., $\mathbb{Z}_{12} = \langle 1 \rangle$. With the subgroup $H = \{0, 4, 8\}$ of \mathbb{Z}_{12} , verify that \mathbb{Z}_{12}/H is cyclic with generator 1 + H.

Solution. I'll leave it to you to rewrite the proof in Problem #8 for an additive group.

- 10. Consider the subgroup $H = \{1, 7\}$ of U_{16} .
 - (a) Quick, how many distinct cosets of H are there? Explain how you know.
 - (b) Find the quotient group U_{16}/H .
 - (c) Create the table for U_{16}/H and verify that it's a group under coset multiplication.
 - (d) Find the order of each $aH \in U_{16}/H$. Is the group cyclic?
- 11. Consider the subgroup $H = \{1, 9\}$ of U_{16} .
 - (a) Find the quotient group U_{16}/H and determine if it's cyclic.
 - (b) Compare your work in part (a) with Problem #10. Are you surprised by the results?
 - (c) U_{16} has another 2-element subgroup K. Find it and determine if U_{16}/K is cyclic.
- 12. (An Important Proof) Let G be a commutative group, H its subgroup, and $a, b \in G$. \leftarrow i.e., The shortcut holds Define the coset product by

$$aH \cdot bH = \{ \alpha \cdot \beta \mid \alpha \in aH, \ \beta \in bH \}.$$

Then show that $aH \cdot bH = (ab)H$.

PROOF. First, we will show that $(ab)H \subseteq aH \cdot bH$. Let $g \in (ab)H$ so that g = (ab)h for some $h \in H$. Then, $g = (ab)h = (a\varepsilon)(bh) \in aH \cdot bH$. Thus, $(ab)H \subseteq aH \cdot bH$.

Next, we will show that $aH \cdot bH \subseteq (ab)H$. Let $\alpha \cdot \beta \in aH \cdot bH$, where $\alpha \in aH$ and $\beta \in bH$. Thus, $\alpha = ah$ and $\beta = bk$ for some $h, k \in H$. Since G is commutative,

$$\alpha \cdot \beta = (ah)(bk) = a(hb)k = a(bh)k = (ab)(hk),$$

where $hk \in H$ as H is closed. Thus $\alpha \cdot \beta \in (ab)H$, so that $aH \cdot bH \subseteq (ab)H$. Combined with $(ab)H \subseteq aH \cdot bH$, we conclude that $aH \cdot bH = (ab)H$.

13. (Some Food for Thought) What about non-commutative groups? In Chapter 21 Exercises, we considered these subgroups of D_4 : $Z = \{\varepsilon, r_{180}\}$ and $H = \{\varepsilon, v\}$. We found that D_4/Z satisfied the shortcut, but D_4/H did not. Can you explain what's going on?

when G is commutative