Abstract Algebra Day 22 Class Work

Below, we'll consider the subgroup $H = \langle 10 \rangle$ of the (multiplicative) group U_{37} .	
1. (a) Quick, how many elements are in U_{37} ?	\leftarrow Yes, 37 is prime.
(b) Verify that $\langle 10 \rangle = \{1, 10, 26\}$ by computing the powers of 10 modulo 37.	
(c) How many distinct cosets of H are there? How do you know?	Ans: 12 cosets.
2. Suggestion: Use a calculator for parts (a) and (b) below.	
(a) Compute the cosets $4H$ and $11H$.	Ans: $4H = \{4, 3, 30\}.$
(b) Compute the coset product $4H \cdot 11H$ without using the coset multiplication shortcut and verify that it is, indeed, equal to $44H$.	,
Note: It might help to write $4H = \{4, 3, -7\}$ and $11H = \{11, -1, -10\}$. (Why?)	
You may use the coset multiplication shortcut for the rest of the problems!	$\leftarrow i.e., \ aH \cdot bH = (ab)H.$
3. Find the coset product $1H \cdot 11H$. (Optional: Compute this <i>without</i> using the shortcut.) What does this say about the role of $1H$ in U_{37}/H ?)
4. (a) Anita claims that $2H$ and $19H$ in U_{37}/H are inverses of each other. Do you agree of disagree with her? Explain.	r
(b) Find the inverse of $15H$ in U_{37}/H . How about the inverse of $28H$?	
5. Verify that U_{37}/H with coset multiplication satisfies the group properties. Note that	
• Since U_{37} is commutative, the shortcut $aH \cdot bH = (ab)H$ holds in U_{37}/H .	
• You may assume that coset multiplication is associative.	\leftarrow Proved in Chapter 21.
6. (a) Find all $a \in U_{37}$ such that $aH = 1H$.	
(b) Find the order of $6H$ in U_{37}/H .	Ans: $ord(6H) = 4.$
Note: Feel free to use the shortcut to compute the powers of $6H$.	
(c) Verify that $\operatorname{ord}(34H) = 3$ in U_{37}/H . It might help to write $34H = (-3)H$.	
(d) Find the order of $4H$ in U_{37}/H .	Ans: $ord(4H) = 6.$
(e) In U_{37} , it turns out that: $\operatorname{ord}(6) = 4$, $\operatorname{ord}(34) = 9$, $\operatorname{ord}(4) = 18$. Any conjectures?	
7. (a) Let $a \in U_{37}$ with $\operatorname{ord}(a) = 12$. Show that $(aH)^{12} = 1H$. What does this say about the order of aH in U_{37}/H ?	t
(b) Prove: $\operatorname{ord}(aH)$ in U_{37}/H is a divisor of $\operatorname{ord}(a)$ in U_{37} for all $a \in U_{37}$.	
8. Recall that U_{13} is cyclic with generator 2, i.e., $U_{13} = \langle 2 \rangle$. With the subgroup $H = \{1, 3, 9\}$ of U_{13} , verify that U_{13}/H is cyclic with generator 2 <i>H</i> .	ł

9. Note that \mathbb{Z}_{12} is cyclic with generator 1, i.e., $\mathbb{Z}_{12} = \langle 1 \rangle$. With the subgroup $H = \{0, 4, 8\}$ of \mathbb{Z}_{12} , verify that \mathbb{Z}_{12}/H is cyclic with generator 1 + H.

- 10. Consider the subgroup $H = \{1, 7\}$ of U_{16} .
 - (a) Quick, how many distinct cosets of H are there? Explain how you know.
 - (b) Find the quotient group U_{16}/H .
 - (c) Create the table for U_{16}/H and verify that it's a group under coset multiplication.
 - (d) Find the order of each $aH \in U_{16}/H$. Is the group cyclic?
- 11. Consider the subgroup $H = \{1, 9\}$ of U_{16} .
 - (a) Find the quotient group U_{16}/H and determine if it's cyclic.
 - (b) Compare your work in part (a) with Problem #10. Are you surprised by the results?
 - (c) U_{16} has another 2-element subgroup K. Find it and determine if U_{16}/K is cyclic.
- 12. (An Important Proof) Let G be a commutative group, H its subgroup, and $a, b \in G$. \leftarrow i.e., The shortcut holds when G is commutative

$$aH\cdot bH=\{\alpha\cdot\beta\mid\alpha\in aH,\ \beta\in bH\}.$$

Then show that $aH \cdot bH = (ab)H$.

13. (Some Food for Thought) What about non-commutative groups? In Chapter 21 Exercises, we considered these subgroups of D_4 : $Z = \{\varepsilon, r_{180}\}$ and $H = \{\varepsilon, v\}$. We found that D_4/Z satisfied the shortcut, but D_4/H did not. Can you explain what's going on?