Abstract Algebra Day 19 Class Work Solutions

- 1. Consider the (multiplicative) group U_{13} and its subgroup $H = \{1, 3, 9\}$. We just saw an example of a *coset* of H, namely $6H = \{6 \cdot 1, 6 \cdot 3, 6 \cdot 9\} = \{6, 5, 2\}$.
 - (a) For each $a \in U_{13}$, compute the coset aH, i.e., compute $1H, 2H, 3H, \ldots, 12H$.

Suggestion: Split the work among your table members.

Solution.

$1H = \{1 \cdot 1, 1 \cdot 3, 1 \cdot 9\} = \{1, 3, 9\}$	$7H = \{7 \cdot 1, 7 \cdot 3, 7 \cdot 9\} = \{7, 8, 11\}$
$2H = \{2 \cdot 1, 2 \cdot 3, 2 \cdot 9\} = \{2, 6, 5\}$	$8H = \{8 \cdot 1, 8 \cdot 3, 8 \cdot 9\} = \{8, 11, 7\}$
$3H = \{3 \cdot 1, 3 \cdot 3, 3 \cdot 9\} = \{3, 9, 1\}$	$9H = \{9 \cdot 1, 9 \cdot 3, 9 \cdot 9\} = \{9, 1, 3\}$
$4H = \{4 \cdot 1, 4 \cdot 3, 4 \cdot 9\} = \{4, 12, 10\}$	$10H = \{10 \cdot 1, 10 \cdot 3, 10 \cdot 9\} = \{10, 4, 12\}$
$5H = \{5 \cdot 1, 5 \cdot 3, 5 \cdot 9\} = \{5, 2, 6\}$	$11H = \{11 \cdot 1, 11 \cdot 3, 11 \cdot 9\} = \{11, 7, 8\}$
$6H = \{6 \cdot 1, 6 \cdot 3, 6 \cdot 9\} = \{6, 5, 2\}$	$12H = \{12 \cdot 1, 12 \cdot 3, 12 \cdot 9\} = \{12, 10, 4\}$

(b) How many *distinct* cosets did you find?

Solution. There are four distinct cosets:

- $1H = 3H = 9H = \{1, 3, 9\}$ (original subgroup)
- $2H = 5H = 6H = \{2, 5, 6\}$
- $4H = 10H = 12H = \{4, 10, 12\}$
- $7H = 8H = 11H = \{7, 8, 11\}$
- (c) Look ahead to Problem #5 to verify that you've found the cosets correctly.
- (d) Write down any observations you have about these cosets.

Solution. Answer will vary. See Section 19.1 in the textbook for details.

- 2. Consider the (additive) group \mathbb{Z}_{12} and its subgroup $H = \{0, 4, 8\}$. We saw an example of a coset of H, namely $6 + H = \{6 + 0, 6 + 4, 6 + 8\} = \{6, 10, 2\}$.
 - (a) How many *distinct* cosets do you expect to find? How do you know?

Solution. There are 12 and 3 elements in \mathbb{Z}_{12} and H, respectively. So, there should be $12 \div 3 = 4$ distinct cosets of H.

(b) For each $a \in \mathbb{Z}_{12}$, compute the coset a + H.

Solution. As conjectured in part (a), we found four distinct cosets:

- $0 + H = 4 + H = 8 + H = \{0, 4, 8\}$ (original subgroup)
- $1 + H = 5 + H = 9 + H = \{1, 5, 9\}$
- $2 + H = 6 + H = 10 + H = \{2, 6, 10\}$
- $3 + H = 7 + H = 11 + H = \{3, 7, 11\}$
- (c) Again, look ahead to Problem #5 to check your cosets.
- (d) Write down any observations you have about these cosets.

Solution. Answer will vary. See Section 19.2 in the textbook for details.

Ans: Less than 12.

 $\leftarrow \text{ It's } 6 + H \text{ instead of } 6H \\ \text{for an additive group.}$

 Again, split the work among table members.

- 3. Consider the (multiplicative) group D_4 and its subgroup $H = \{\varepsilon, v\}$.
 - (a) How many *distinct* cosets do you expect? Explain your reasoning.

Solution. There are 8 and 2 elements in D_4 and H, respectively. So, there should be $8 \div 2 = 4$ distinct cosets of H.

(b) For each $a \in D_4$, compute the coset aH. The following table should help.

Remark: For σ , $\tau \in D_4$, the "product" $\sigma \circ \tau$ is the entry in row σ and column τ . For example, the product $d \circ r_{90} = v$ is shown in bold.

0	ε	r_{90}	r_{180}	r_{270}	h	v	d	d'
ε	ε	r_{90}	r_{180}	r_{270}	h	v	d	d'
r_{90}	r_{90}	r_{180}	r_{270}	ε	d'	d	h	v
r_{180}	r_{180}	r_{270}	ε	r_{90}	v	h	d'	d
r_{270}	r_{270}	ε	r_{90}	r_{180}	d	d'	v	h
h	h	d	v	d'	ε	r_{180}	r_{90}	r_{270}
v	v	d'	h	d	r_{180}	ε	r_{270}	r_{90}
d	d	\boldsymbol{v}	d'	h	r_{270}	r_{90}	ε	r_{180}
d'	d'	h	d	v	r_{90}	r_{270}	r_{180}	ε

Solution. Indeed, there are 4 distinct left cosets of H, as shown below:

- $\varepsilon H = vH = \{\varepsilon, v\}$
- $r_{90}H = dH = \{r_{90}, d\}$
- $r_{180}H = hH = \{r_{180}, h\}$
- $r_{270}H = d'H = \{r_{270}, d'\}$

4. Come up with your own *multiplicative* group G and its subgroup H.

- (a) How many distinct cosets do you expect to find?
- (b) Find all distinct cosets aH.
- 5. Here are some data from Problems #1 and #2, which you might find useful.

Cosets of $H = \{1, 3, 9\}$ in U_{13} are...

Cosets of $H = \{0, 4, 8\}$ in \mathbb{Z}_{12} are...

- $1H = 3H = 9H = \{1, 3, 9\}$ • $2H = 5H = 6H = \{2, 5, 6\}$ • $4H = 10H = 12H = \{4, 10, 12\}$ • $0 + H = 4 + H = 8 + H = \{0, 4, 8\}$ • $1 + H = 5 + H = 9 + H = \{1, 5, 9\}$ • $2 + H = 6 + H = 10 + H = \{2, 6, 10\}$
- $7H = 8H = 11H = \{7, 8, 11\}$ • $3 + H = 7 + H = 11 + H = \{3, 7, 11\}$

Here, the cosets 3 + H and 11 + H are the same, even though $3 \neq 11$ in \mathbb{Z}_{12} . But could we have predicted that 3 + H = 11 + H without computing these cosets? Let's find out!

- (a) Let G be a group, H a subgroup, and $a, b \in G$. Based on the examples above, describe how a and b must be be related so that:
 - a + H = b + H (for additive groups).

Note: For additive groups, the relationship between a and b must be additive.

• aH = bH (for multiplicative groups).

Note: Here, a and b are related multiplicatively.

Hint: What do you notice about a - b and b - a?

 $\leftarrow \text{ For example, } 2H = 6H.$

 \leftarrow Make sure G is finite.

 $\leftarrow \mathsf{You're \ welcome}$

_

Solution.

- For additive groups, a + H = b + H if and only if $a b \in H$ (or $b a \in H$).
- For multiplicative groups, aH = bH if and only if $b^{-1}a \in H$ (or $a^{-1}b \in H$).
- (b) Prove your conjecture from part (a).

Solution. See Theorem 19.16 in the textbook.

- 6. Let $H = \{\varepsilon, v\}$ be a subgroup of D_4 . In Problem #3, you computed the *left* cosets aH.
 - (a) For each $a \in D_4$, compute the right coset $Ha = \{ha \mid h \in H\}$.
 - **Solution.** There are 4 distinct right cosets of H, as shown below:
 - $H\varepsilon = Hv = \{\varepsilon, v\}$
 - $Hr_{90} = Hd' = \{r_{90}, d'\}$
 - $Hr_{180} = Hh = \{r_{180}, h\}$
 - $Hr_{270} = Hd = \{r_{270}, d\}$
 - (b) **True or False:** aH = Ha for all $a \in D_4$.

Solution. False. We have $aH \neq Ha$ when $a = r_{90}, r_{270}, d$, or d'.

- 7. Now let $K = \{\varepsilon, r_{90}, r_{180}, r_{270}\}$ be a subgroup of D_4 .
 - (a) For each $a \in D_4$, compute the left and right cosets aK and Ka.

Solution. When $a \in D_4$ is a rotation (i.e., $a = \varepsilon$, r_{90} , r_{180} , or r_{270}), then we have aK = Ka = K. When $a \in D_4$ is a reflection (i.e., a = h, v, d, or d'), then we have $aK = Ka = \{h, v, d, d'\}$.

(b) **True or False:** aK = Ka for all $a \in D_4$.

Solution. True. See part (a) solution for details.

(c) **True or False:** aK = Ka means ak = ka for each $k \in K$.

Solution. False. With a = h, for example, we have hK = Kh (i.e., set equality), but $h \cdot r_{90} = d$, while $r_{90} \cdot h = d'$. So, element-by-element equality does *not* hold.

- 8. Consider the additive group \mathbb{Z} and its subgroup $H = 5\mathbb{Z}$.
 - (a) Compute the cosets 12 + H, -1 + H, 203 + H, -25 + H, and 101 + H.
 - (b) Find all distinct cosets of H.

Solution. The distinct cosets of H are 0 + H, 1 + H, 2 + H, 3 + H, and 4 + H. We have the following equalities of cosets:

- 12 + H = 2 + H.
- -1 + H = 4 + H.
- 203 + H = 3 + H.
- -25 + H = 0 + H.
- 101 + H = 1 + H.
- 9. Consider the additive group \mathbb{Z} and its subgroup $H = 5\mathbb{Z}$. Determine whether or not the following cosets of H are equal.
 - (a) 436 + H and 721 + H.

Solution. We use our conjecture from Problem #5(a), namely: a+H = b+H if and only if $a-b \in H$ (or $b-a \in H$). We have 436-721 = -285, which is in H. Thus, the cosets 436 + H and 721 + H are equal.

 Write a proof for the multiplicative case.

Ans for (b): True.

(b) -43 + H and 111 + H.

Solution. We have $-43 - 111 = -154 \notin H$, so that $-43 + H \neq 111 + H$.

(c) 317 + H and 532 + H.

Solution. We have $317 - 532 = -215 \in H$, so that 317 + H = 532 + H.

10. Let H and K be subgroups of a group G. Fix $a, b \in G$ and define $aH = \{ah \mid h \in H\}$ and $bK = \{bk \mid k \in K\}$. Prove that if $aH \subseteq bK$, then $H \subseteq K$.