Adding matrices: Assume all entries (i.e., numbers) are in Zy.
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Multiplying matrices: Take the dot product of row and column.
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Definition: Let M(Zio) be the set of 2 x 2 matrices with entries in Zg.

Examples: We have a, 8 € M(Z1p), where a = [1 4] and 8 = [3 §].
Remarks:
e M(Zyp) is closed under addition and multiplication.
e Addition and multiplication in M (Zyy) are associative, i.e.,
(@+B)+y=a+(B+7) and (a-B)-v=a-(8-7)

for all a, B, v € M(Zqp).



Claim: M (Zi¢) with addition is a group.

1. M(Zyg) is closed under addition.

2. Addition in M(Z,p) is associative.

3. M(Z10) has an additive identity element [ 3] such that
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4. Every element in M(Z0) has an additive inverse.

Example: 1 2 98| 100
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But... M(Z¢) with multiplication is not a group.

1. M(Z1y) is closed under multiplication.

2. Multiplication in M (Zj¢) is associative.

3. M(Z10) has a multiplicative identity element £ = [} ]| such that

e-a=aand a-e=qa for all a € M(Zig).

! 4. But... not every element in M (Z10) has a multiplicative inverse.

Example: Impossible, as the bottom row of the product is 0 O.
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Definition: Let o € M(Z1¢) where o = [‘C‘ g]. The determinant of «

is given by det o = ad — bc. Note that det o is a number in Zyy.
Example: Let « = [2%]. Then deta=2-4—-1-5=3.

Application: The multiplicative inverse of « :is. .
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You should verify that a-a ' =¢ and a™' -a =¢. (Note: ¢ =[{?].)
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