Adding matrices: Assume all entries (i.e., numbers) are in \mathbb{Z}_{10} .

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 1+5 & 2+6 \\ 3+7 & 4+8 \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 0 & 2 \end{bmatrix}$$

Multiplying matrices: Take the dot product of row and column.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \cdot \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 1 \cdot 5 + 2 \cdot 7 & 1 \cdot 6 + 2 \cdot 8 \\ 3 \cdot 5 + 4 \cdot 7 & 3 \cdot 6 + 4 \cdot 8 \end{bmatrix} = \begin{bmatrix} 9 & 2 \\ 3 & 0 \end{bmatrix}$$

Definition: Let $M(\mathbb{Z}_{10})$ be the set of 2×2 matrices with entries in \mathbb{Z}_{10} .

Examples: We have $\alpha, \beta \in M(\mathbb{Z}_{10})$, where $\alpha = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $\beta = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$.

Remarks:

- $M(\mathbb{Z}_{10})$ is closed under addition and multiplication.
- Addition and multiplication in $M(\mathbb{Z}_{10})$ are associative, i.e.,

$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$
 and $(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$

for all $\alpha, \beta, \gamma \in M(\mathbb{Z}_{10})$.

Claim: $M(\mathbb{Z}_{10})$ with addition is a group.

- 1. $M(\mathbb{Z}_{10})$ is closed under addition.
- 2. Addition in $M(\mathbb{Z}_{10})$ is associative.
- 3. $M(\mathbb{Z}_{10})$ has an <u>additive</u> identity element $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ such that $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + \alpha = \alpha$ and $\alpha + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \alpha$ for all $\alpha \in M(\mathbb{Z}_{10})$.
- 4. Every element in $M(\mathbb{Z}_{10})$ has an additive inverse.

Example:
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 9 & 8 \\ 7 & 6 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

But... $M(\mathbb{Z}_{10})$ with multiplication is *not* a group.

- 1. $M(\mathbb{Z}_{10})$ is closed under multiplication.
- 2. Multiplication in $M(\mathbb{Z}_{10})$ is associative.
- 3. $M(\mathbb{Z}_{10})$ has a multiplicative identity element $\varepsilon = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ such that $\varepsilon \cdot \alpha = \alpha$ and $\alpha \cdot \varepsilon = \alpha$ for all $\alpha \in M(\mathbb{Z}_{10})$.
- 4. **But...** not every element in $M(\mathbb{Z}_{10})$ has a multiplicative inverse.

Example: Impossible, as the bottom row of the product is 0 0.

$$\left[\begin{array}{cc} 2 & 3 \\ 0 & 0 \end{array}\right] \cdot \left[\begin{array}{cc} a & b \\ c & d \end{array}\right] = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$$

Definition: Let $\alpha \in M(\mathbb{Z}_{10})$ where $\alpha = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. The *determinant* of α is given by $\det \alpha = ad - bc$. Note that $\det \alpha$ is a number in \mathbb{Z}_{10} .

Example: Let $\alpha = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$. Then det $\alpha = 2 \cdot 4 - 1 \cdot 5 = 3$.

Application: The multiplicative inverse of $\alpha = \begin{bmatrix} 2 & 1 \\ 5 & 4 \end{bmatrix}$ is...

$$\alpha^{-1} = 3^{-1} \cdot \begin{bmatrix} 4 & -1 \\ -5 & 2 \end{bmatrix} = 7 \cdot \begin{bmatrix} 4 & 9 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} 8 & 3 \\ 5 & 4 \end{bmatrix}.$$

$$\det \alpha = 3$$

$$3 \cdot 7 = 1 \text{ in } \mathbb{Z}_{10}$$

You should verify that $\alpha \cdot \alpha^{-1} = \varepsilon$ and $\alpha^{-1} \cdot \alpha = \varepsilon$. (Note: $\varepsilon = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.)