inputs outputs

Example. Let $\sigma: \{1, 2, 3\} \rightarrow \{1, 2, 3\}$ be a function defined by

$$\sigma(1) = 3$$
, $\sigma(2) = 1$, $\sigma(3) = 2$.

Then σ is a permutation of the set $\{1, 2, 3\}$, i.e., it "shuffles" the numbers 1, 2, and 3.

Non-example. The function f is not a permutation of $\{1, 2, 3\}$:

$$f(1) = 2, f(2) = 1, f(3) = 1.$$

Let σ and τ be permutations of $\{1, 2, 3\}$ given by

•
$$\sigma(1) = 3$$
, $\sigma(2) = 1$, $\sigma(3) = 2$

•
$$\tau(1) = 2$$
, $\tau(2) = 1$, $\tau(3) = 3$

We can compose σ and τ to obtain $\sigma \circ \tau$, which happens to be another permutation of $\{1, 2, 3\}$. Let's see...

inside
$$\downarrow$$
 \downarrow

•
$$(\sigma \circ \tau)(1) = \sigma(\tau(1)) = \sigma(2) = 1$$

•
$$(\sigma \circ \tau)(2) = \sigma(\tau(2)) = \sigma(1) = 3$$

• $(\sigma \circ \tau)(3) = \sigma(\tau(3)) = \sigma(3) = 2$

Note: This is just like composing symmetries.

Definition: Let S_3 be the set of all permutations of $\{1, 2, 3\}$.

Discuss in your group: Let σ , γ , $\varepsilon \in S_3$ where

•
$$\sigma(1) = 3$$
, $\sigma(2) = 1$, $\sigma(3) = 2$

•
$$\gamma(1) = 2$$
, $\gamma(2) = 3$, $\gamma(3) = 1$

•
$$\varepsilon(1) = 1$$
, $\varepsilon(2) = 2$, $\varepsilon(3) = 3$

Compute $\varepsilon \circ \sigma$ and $\sigma \circ \gamma$. Notice anything?

Answer: We have $\sigma \circ \gamma = \varepsilon$, because...

•
$$(\sigma \circ \gamma)(1) = \sigma(\gamma(1)) = \sigma(2) = 1$$

•
$$(\sigma \circ \gamma)(2) = \sigma(\gamma(2)) = \sigma(3) = 2$$

•
$$(\sigma \circ \gamma)(3) = \sigma(\gamma(3)) = \sigma(1) = 3$$

(Also, $\varepsilon \circ \sigma = \sigma$.)

Identity and Inverse

• The element $\varepsilon \in S_3$ defined by

$$\varepsilon(1) = 1$$
, $\varepsilon(2) = 2$, $\varepsilon(3) = 3$

has the property $\varepsilon \circ \alpha = \alpha$ and $\alpha \circ \varepsilon = \alpha$ for all $\alpha \in S_3$. We call ε the identity permutation in S_3 .

• We saw that $\sigma \circ \gamma = \varepsilon$ and $\gamma \circ \sigma = \varepsilon$. We say that σ and γ are inverses of each other, and we write $\gamma = \sigma^{-1}$ and $\sigma = \gamma^{-1}$.

Matrix notation: Consider again $\sigma \in S_3$ defined by

$$\sigma(1) = 3, \ \sigma(2) = 1, \ \sigma(3) = 2.$$

We can write σ in matrix form like this:

Problem #2: Let α , β , $\chi \in S_n$. If $\alpha \circ \chi = \beta$, then $\chi = \alpha^{-1} \circ \beta$.

Proof: Assume $\alpha \circ \chi = \beta$.

Compose on the left by α^{-1} to get

$$\alpha^{-1} \circ (\alpha \circ \chi) = \alpha^{-1} \circ \beta.$$

The left side of this equation becomes

$$\alpha^{-1} \circ (\alpha \circ \chi) = (\alpha^{-1} \circ \alpha) \circ \chi$$
 (associative law)
$$= \varepsilon \circ \chi$$
 (α^{-1} is the inverse of α)
$$= \chi$$
 (ε is the identity)

Thus,
$$\chi = \alpha^{-1} \circ \beta$$
.

Scrap:
Solve
$$5 \cdot x = 17$$
.

$$\frac{1}{5} \cdot (5 \cdot x) = \frac{1}{5} \cdot 17$$

$$(\frac{1}{5} \cdot 5) \cdot x$$

$$1 \cdot x$$

$$x$$

$$\Rightarrow x = \frac{1}{5} \cdot 17$$