Definition. A symmetry of a square is a motion that, when applied to the square, places the square in the same space that it originally occupied. ## **Demonstration:** Note: $$r_{90} = r_{450} = r_{810} = \cdots$$ **Notation:** r_{90} is a counterclockwise rotation of the square (about its center) by 90°. $$r_{90} \begin{pmatrix} \boxed{1} & 2 \\ 4 & 3 \end{pmatrix} = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$$ **Key:** Think of r_{90} as a function whose input/output is a square. Discuss in your group: Describe all symmetries of a square. The symmetries of a square are: • 4 rotations: r_0 , r_{90} , r_{180} , r_{270} **Note:** r_0 is often denoted ε and is called the identity. • 4 reflections: h, v, d, d'. (These are the axis of reflection.) Let D_4 be the set of symmetries of a square, i.e., $$D_4 = \{\varepsilon, r_{90}, r_{180}, r_{270}, h, v, d, d'\}.$$ - We can compose symmetries to obtain other symmetries. - Analogy: We can add integers to obtain other integers. "Composed with" **Example:** $d \circ r_{90} = v$, because... **Remark:** This is just like $(f \circ g)(x) = f(g(x))$. In today's Class Work, you'll complete a composition table for D_4 : | | | Inside function | | | | | 190 0 d = ? | | | | |----------|---------------|-----------------|---|-----------|-----------|-----------|-------------|-----------|-----------|--| | | 0 | arepsilon | red | r_{180} | r_{270} | h | v | | $\int d'$ | | | Function | ε | | | | | | | | | | | | r_{90} | | | r_{270} | | d' | d | h | v | | | | r_{180} | | | | | v | | d' | d | | | | r_{270} | | | | | d | d' | v | h | | | کی ا | h | | d | v | d' | | r_{180} | r_{90} | r_{270} | | | Jutside | v | | d' | | d | r_{180} | | r_{270} | r_{90} | | | | | | γV | d' | h | r_{270} | r_{90} | | r_{180} | | | | d' | | h | d | v | | r_{270} | r_{180} | | | | | | | do 10 | no = V | | | | | | | | 0 | ε | r_{90} | r_{180} | r_{270} | h | ig v | d | d' | |---------------|---------------|---------------|-----------|---------------|---------------|-----------|-----------|-----------| | ε | ε | r_{90} | r_{180} | r_{270} | h | v | d | d' | | r_{90} | r_{90} | r_{180} | r_{270} | ε | d' | d | h | v | | r_{180} | r_{180} | r_{270} | arepsilon | r_{90} | v | h | d' | d | | r_{270} | r_{270} | ε | r_{90} | r_{180} | d | d' | v | h | | (h) | h | d | v | d' | ε | r_{180} | r_{90} | r_{270} | | v | v | d' | h | d | r_{180} | arepsilon | r_{270} | r_{90} | | d | d | v | d' | h | r_{270} | r_{90} | ε | r_{180} | | d' | d' | h | d | $oxed{v}$ | r_{90} | r_{270} | r_{180} | arepsilon | ## **Inverse examples:** - \bullet h is a self-inverse - $r_{90} \circ r_{270} = \varepsilon$ inverse pair ## Group properties: - \checkmark 1. D_4 is closed. - \checkmark 2. Associative law, i.e., $(\sigma \circ \tau) \circ \mu = \sigma \circ (\tau \circ \mu)$. (Yes. We'll see why soon.) - ✓ 3. The *identity* element ε is in D_4 . $\xi \circ \mathcal{G} = \mathcal{G}$, $\mathcal{G} \circ \xi = \mathcal{G}$. - \checkmark 4. Every element in D_4 has an *inverse*. Take $h \in D_4$, i.e., the horizontal reflection. Then... $$C(h) = \{ \sigma \in D_4 \mid \sigma \circ h = h \circ \sigma \}$$ (i.e., elements that commute with h .) is called the *centralizer* of h in D_4 . ### Elements: - $\varepsilon \in C(h)$, because $\varepsilon \circ h = h \circ \varepsilon$. - $r_{180} \in C(h)$, because $r_{180} \circ h = h \circ r_{180}$. - $h \in C(h)$, because $h \circ h = h \circ h$. - $v \in C(h)$, because $v \circ h = h \circ v$. ## **Conclusion:** $C(h) = \{\varepsilon, \ r_{180}, \ h, \ v\}$ (It's a subset of D_4 .) • Also, $r_{90} \notin C(h)$, since $r_{90} \circ h \neq h \circ r_{90}$. (Likewise for all other elements of D_4 .) Table for $C(h) = \{ \varepsilon, r_{180}, h, v \}$: | 0 | arepsilon | r_{180} | h | $oxed{v}$ | |-----------|---------------|---------------|-----------|---------------| | arepsilon | ε | r_{180} | h | v | | r_{180} | r_{180} | ε | v | h | | h | h | v | ε | r_{180} | | v | $\mid v \mid$ | h | r_{180} | ε | Conclusion: C(h) is a subgroup of D_4 . # Group properties: - 1. C(h) is closed. - 2. Associative law, i.e., $(\sigma \circ \tau) \circ \mu = \sigma \circ (\tau \circ \mu)$. (Yes. We'll see why soon.) - 3. C(h) contains the identity ε . - 4. Elements in C(h) have inverses.