Definition. A symmetry of a square is a motion that, when applied to

the square, places the square in the same space that it originally occupied.

Demonstration:

Note: 90 — T'450 — T's10 — **

Notation: rq is a counterclockwise rotation of the square (about its center) by 90°.
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Key: Think of rqg as a function

whose input/output is a square.

Discuss in your group: Describe all symmetries of a square.



The symmetries of a square are:

e 4 rotations: 7y, 799, 7180, T270

Note: r; is often denoted ¢ and is called the identity.

o 4 reflections: h, v, d, d’. (These are the axis of reflection.)




Let D4 be the set of symmetries of a square, i.e.,
Dy = {e, 90, 7180, T270, h,@) d, d'}.

e We can compose symmetries to obtain other symmetries.
e Analogy: We can add integers to obtain other integers.
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Example: d o rgyg = v, because. ..

ero ([, 1) = (o (L20) = (13]) =

Remark: This is just like (f o g)(x) = f(g(x)).



In today’s Class Work, you’ll complete a composition table for Dy:
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Group properties:

Vo1, D, is closed.
v/ 2. Associative law, i.e., (coT)opu =0 o (Topu). (Yes. We'll see why soon.)
v’ 3. The identity element € is in Dj. o0 =0 , 0. & = 0

v 4. Every element in D4 has an inverse.



Take h € Dy, i.e., the horizontal reflection. Then. ..

C(h)={0c€ Dy|ooh=hoao} (i.e., elements that commute with h.)

is called the centralizer of h in Djy.

Elements:

e cc C(h), because eoh =hoe.

Conclusion:
C(h) = {E, 180, h, ’U}
(It’s a subset of Dy.)

e 1130 € C'(h), because 7189 © h = h o r1g0.

e h € C(h), because hoh = ho h.

e v € C(h), because voh = how.

e Also, rgg & C(h), since r9g o h # h o rgy. (Likewise for all other elements of Dy.)
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Table for C(h) = {&, ris0, h, v}:

o € 7180 h (V)
3 3 r h v y
180 Conclusion:
T180 || 180 | € v h _
C'(h) is a subgroup of Dy.
h h 1 & 180
v v h 7180 g

Group properties:
1. C(h) is closed.
2. Associative law, i.e., (coT)opu =00 (7o pu). (Yes. We'll see why soon.)
3. C'(h) contains the identity e.

4. Elements in C(h) have inverses.



