**Definition.** A symmetry of a square is a motion that, when applied to the square, places the square in the same space that it originally occupied.

## **Demonstration:**

Note: 
$$r_{90} = r_{450} = r_{810} = \cdots$$

**Notation:**  $r_{90}$  is a counterclockwise rotation of the square (about its center) by 90°.

$$r_{90} \begin{pmatrix} \boxed{1} & 2 \\ 4 & 3 \end{pmatrix} = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$$

**Key:** Think of  $r_{90}$  as a function whose input/output is a square.

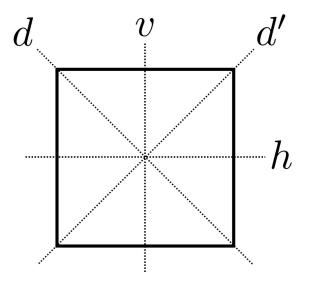
Discuss in your group: Describe all symmetries of a square.

The symmetries of a square are:

• 4 rotations:  $r_0$ ,  $r_{90}$ ,  $r_{180}$ ,  $r_{270}$ 

**Note:**  $r_0$  is often denoted  $\varepsilon$  and is called the identity.

• 4 reflections: h, v, d, d'. (These are the axis of reflection.)



Let  $D_4$  be the set of symmetries of a square, i.e.,

$$D_4 = \{\varepsilon, r_{90}, r_{180}, r_{270}, h, v, d, d'\}.$$

- We can compose symmetries to obtain other symmetries.
- Analogy: We can add integers to obtain other integers.

"Composed with" **Example:**  $d \circ r_{90} = v$ , because...

**Remark:** This is just like  $(f \circ g)(x) = f(g(x))$ .

In today's Class Work, you'll complete a composition table for  $D_4$ :

|          |               | Inside function |                                         |           |           |           | 190 0 d = ? |           |           |  |
|----------|---------------|-----------------|-----------------------------------------|-----------|-----------|-----------|-------------|-----------|-----------|--|
|          | 0             | arepsilon       | red | $r_{180}$ | $r_{270}$ | h         | v           |           | $\int d'$ |  |
| Function | $\varepsilon$ |                 |                                         |           |           |           |             |           |           |  |
|          | $r_{90}$      |                 |                                         | $r_{270}$ |           | d'        | d           | h         | v         |  |
|          | $r_{180}$     |                 |                                         |           |           | v         |             | d'        | d         |  |
|          | $r_{270}$     |                 |                                         |           |           | d         | d'          | v         | h         |  |
| کی ا     | h             |                 | d                                       | v         | d'        |           | $r_{180}$   | $r_{90}$  | $r_{270}$ |  |
| Jutside  | v             |                 | d'                                      |           | d         | $r_{180}$ |             | $r_{270}$ | $r_{90}$  |  |
|          |               |                 | γV                                      | d'        | h         | $r_{270}$ | $r_{90}$    |           | $r_{180}$ |  |
|          | d'            |                 | h                                       | d         | v         |           | $r_{270}$   | $r_{180}$ |           |  |
|          |               |                 | do 10                                   | no = V    |           |           |             |           |           |  |

| 0             | $\varepsilon$ | $r_{90}$      | $r_{180}$ | $r_{270}$     | h             | ig  v     | d         | d'        |
|---------------|---------------|---------------|-----------|---------------|---------------|-----------|-----------|-----------|
| $\varepsilon$ | $\varepsilon$ | $r_{90}$      | $r_{180}$ | $r_{270}$     | h             | v         | d         | d'        |
| $r_{90}$      | $r_{90}$      | $r_{180}$     | $r_{270}$ | $\varepsilon$ | d'            | d         | h         | v         |
| $r_{180}$     | $r_{180}$     | $r_{270}$     | arepsilon | $r_{90}$      | v             | h         | d'        | d         |
| $r_{270}$     | $r_{270}$     | $\varepsilon$ | $r_{90}$  | $r_{180}$     | d             | d'        | v         | h         |
| (h)           | h             | d             | v         | d'            | $\varepsilon$ | $r_{180}$ | $r_{90}$  | $r_{270}$ |
| v             | v             | d'            | h         | d             | $r_{180}$     | arepsilon | $r_{270}$ | $r_{90}$  |
| d             | d             | v             | d'        | h             | $r_{270}$     | $r_{90}$  | ε         | $r_{180}$ |
| d'            | d'            | h             | d         | $oxed{v}$     | $r_{90}$      | $r_{270}$ | $r_{180}$ | arepsilon |

## **Inverse examples:**

- $\bullet$  h is a self-inverse
- $r_{90} \circ r_{270} = \varepsilon$

inverse pair

## Group properties:

- $\checkmark$  1.  $D_4$  is closed.
- $\checkmark$  2. Associative law, i.e.,  $(\sigma \circ \tau) \circ \mu = \sigma \circ (\tau \circ \mu)$ . (Yes. We'll see why soon.)
- ✓ 3. The *identity* element  $\varepsilon$  is in  $D_4$ .  $\xi \circ \mathcal{G} = \mathcal{G}$ ,  $\mathcal{G} \circ \xi = \mathcal{G}$ .
- $\checkmark$  4. Every element in  $D_4$  has an *inverse*.

Take  $h \in D_4$ , i.e., the horizontal reflection. Then...

$$C(h) = \{ \sigma \in D_4 \mid \sigma \circ h = h \circ \sigma \}$$
 (i.e., elements that commute with  $h$ .)

is called the *centralizer* of h in  $D_4$ .

### Elements:

- $\varepsilon \in C(h)$ , because  $\varepsilon \circ h = h \circ \varepsilon$ .
- $r_{180} \in C(h)$ , because  $r_{180} \circ h = h \circ r_{180}$ .
- $h \in C(h)$ , because  $h \circ h = h \circ h$ .
- $v \in C(h)$ , because  $v \circ h = h \circ v$ .

## **Conclusion:**

 $C(h) = \{\varepsilon, \ r_{180}, \ h, \ v\}$  (It's a subset of  $D_4$ .)

• Also,  $r_{90} \notin C(h)$ , since  $r_{90} \circ h \neq h \circ r_{90}$ . (Likewise for all other elements of  $D_4$ .)

Table for  $C(h) = \{ \varepsilon, r_{180}, h, v \}$ :

| 0         | arepsilon     | $r_{180}$     | h         | $oxed{v}$     |
|-----------|---------------|---------------|-----------|---------------|
| arepsilon | $\varepsilon$ | $r_{180}$     | h         | v             |
| $r_{180}$ | $r_{180}$     | $\varepsilon$ | v         | h             |
| h         | h             | v             | ε         | $r_{180}$     |
| v         | $\mid v \mid$ | h             | $r_{180}$ | $\varepsilon$ |

Conclusion: C(h) is a subgroup of  $D_4$ .

# Group properties:

- 1. C(h) is closed.
- 2. Associative law, i.e.,  $(\sigma \circ \tau) \circ \mu = \sigma \circ (\tau \circ \mu)$ . (Yes. We'll see why soon.)
- 3. C(h) contains the identity  $\varepsilon$ .
- 4. Elements in C(h) have inverses.