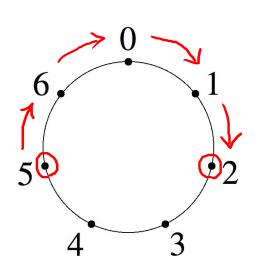
Number system \mathbb{Z}_7

Consider the number system $\mathbb{Z}_7 = \{0, 1, 2, 3, 4, 5, 6\}$. (7 elements in \mathbb{Z}_7 .)

Computations in \mathbb{Z}_7 :



$$1 + 3 = 4$$

$$5+4=2$$
 (Shown on clock)

$$2 - 6 = 3$$

$$3 \cdot 5 = 15 = 0 + 15 = 1$$

Terminology. Because $3 \cdot 5 = 1$, we say that 3 and 5 are multiplicative inverses of each other in \mathbb{Z}_7 .

Analogous to

$$\frac{1}{5} \cdot 5 = 1$$

with real #'s.

Some notations

Be careful of the subtle distinctions:

- $16 \neq 30$ in \mathbb{Z} .
- 16 = 30 in \mathbb{Z}_7 . (Both equal to 2 in \mathbb{Z}_7 .)

Notation: The two statements

$$a = b \text{ in } \mathbb{Z}_7 \text{ and } a = b \pmod{7}$$

mean the same thing.

Problem #4

Example: Let a = 98765123406 and b = 98765123476.

Then a = b in \mathbb{Z}_7 because b is 70 more than a.

More generally, let $a, b \in \mathbb{Z}$. Then a = b in \mathbb{Z}_7 means...

- \bullet the difference between a and b is a multiple of 7, or
- $7 \mid (a-b)$, i.e., 7 is a divisor of the difference a-b. • $n \mid (a-b)$

Special case: a = 0 in \mathbb{Z}_7 means $7 \mid a$ (i.e., b = 0).

Note: This property is true in any \mathbb{Z}_m . (Replace 7 with m.)

Problem #7: $\mathbb{Z}_{15} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14\}.$

$$(\operatorname{In} \mathbb{Z}_{15}: 3 \cdot x = 0, 3, 6, 9, 12 \neq 1.)$$

Which elements have multiplicative inverses? $(a \cdot b = 1 \text{ in } \mathbb{Z}_{15}.)$

•
$$2 \cdot 8 = 1$$

•
$$7 \cdot 13 = 1$$

•
$$14 \cdot 14 = (-1) \cdot (-1) = 1$$

Note: 1, 4, 11, 14 are *self-inverses*.

Problem #7: $\mathbb{Z}_{15} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14\}.$

Elements with multiplicative inverses: 1, 2, 4, 7, 8, 11, 13, 14.

Elements without multiplicative inverses: 0, 3, 5, 6, 9, 10, 12.

Observations:

- $gcd(4, 15) = 1 \implies 4$ has a multiplicative inverse in \mathbb{Z}_{15} .
- $gcd(6,15) \neq 1 \implies 6$ does not have a multiplicative inverse in \mathbb{Z}_{15} .

Conjecture: Let $a \in \mathbb{Z}_m$.

- If gcd(a, m) = 1, then a has a multiplicative inverse in \mathbb{Z}_m .
- If $gcd(a, m) \neq 1$, then a does not have a multiplicative inverse in \mathbb{Z}_m .