Goal: Re-prove this theorem, using a tool from abstract algebra.

Theorem. Let F be a field and fix $g(x) \in F[x]$.

- 1. If g(x) is factorable, then $F[x]/\langle g(x)\rangle$ is not a field.
- 2. If g(x) is unfactorable, then $F[x]/\langle g(x)\rangle$ is a field.

Discuss in your group:

- What does it mean that $5\mathbb{Z}$ is a maximal ideal of \mathbb{Z} ?
- Is $12\mathbb{Z}$ maximal in \mathbb{Z} ? No, because $12\mathbb{Z} \subsetneq 4\mathbb{Z} \subsetneq \mathbb{Z}$.

Definition. Let M be an ideal of a commutative ring R, with $M \neq R$. Then M is maximal in R if for any ideal A with $M \subseteq A \subseteq R$, we have A = M or A = R.

Remark: Thus, there is no ideal A that is *strictly* between M and R.

Today's Theorem. Let M be an ideal of a commutative ring R. $\mathbb{Z}/2\mathbb{Z}$

1. If M is not maximal in R, then R/M is not a field. $(\mathbb{Z}/12\mathbb{Z} \cong \mathbb{Z}_{12}.)$

(Contrapositive: If R/M is a field, then M is maximal in R.)

57 7/57

2. If M is maximal in R, then R/M is a field. $(\mathbb{Z}/5\mathbb{Z} \cong \mathbb{Z}_5.)$

Last time: Let F be a field and fix $g(x) \in F[x]$.

- 1. If g(x) is factorable, then $\langle g(x) \rangle$ is not maximal in F[x].
- 2. If g(x) is unfactorable, then $\langle g(x) \rangle$ is maximal in F[x].

$$\langle g(x) \rangle$$
 F(x)

Today: Let M be an ideal of a commutative ring R.

- 1. If M is not maximal in R, then R/M is not a field.
- 2. If M is maximal in R, then R/M is a field.

Use this theorem with $R = F[x], M = \langle g(x) \rangle.$

Theorem. Let F be a field and fix $g(x) \in F[x]$.

- 1. If g(x) is factorable, then $F[x]/\langle g(x)\rangle$ is not a field.
- 2. If g(x) is unfactorable, then $F[x]/\langle g(x)\rangle$ is a field.

Theorem: If M is maximal in R, then R/M is a field.

Proof outline:

- Let $a + M \neq 0 + M$ in R/M. Thus, $a \notin M$.
- Define $M + \langle a \rangle = \{m + a \cdot r \mid m \in M, r \in R\}$, an ideal of R.
- We have $M \subseteq M + \langle a \rangle \subseteq R$.
- Since M is maximal, $M + \langle a \rangle = M$ or $M + \langle a \rangle = R$.
- But $a = 0 + a \cdot 1 \in M + \langle a \rangle$, while $a \notin M$. Thus, $M + \langle a \rangle \neq M$.
- Then, $M + \langle a \rangle = R$, so that $1 \in M + \langle a \rangle \Longrightarrow 1 = m + a \cdot r$.
- Hence, $a \cdot r + M = 1 + M$, because $1 a \cdot r = m \in M$.
- Thus, $(a+M) \cdot (r+M) = 1 + M$, so that R/M is a field.