Recall: The quotient ring $\mathbb{Z}_7[x]/\langle x^2-1\rangle$ contains cosets of the form

$$a(x) + \langle x^2 - 1 \rangle$$
 where $a(x) \in \mathbb{Z}_7[x]$.

Discuss in your group: Is $\mathbb{Z}_7[x]/\langle x^2-1\rangle$ a field? Why or why not?

Answer: No, because $\mathbb{Z}_7[x]/\langle x^2-1\rangle$ has zero divisors.

$$((x+1) + \langle x^2 - 1 \rangle) \cdot ((x-1) + \langle x^2 - 1 \rangle) = (x+1)(x-1) + \langle x^2 - 1 \rangle$$

$$\Rightarrow \neq 0 + \langle x^2 - 1 \rangle$$

$$= (x^2 - 1) + \langle x^2 - 1 \rangle$$

$$= 0 + \langle x^2 - 1 \rangle$$

Key: $x^2 - 1$ is factorable in $\mathbb{Z}_7[x] \Longrightarrow \mathbb{Z}_7[x]/\langle x^2 - 1 \rangle$ is not a field.

Today: Consider the polynomial ring $\mathbb{R}[x]$ and a subset

$$\langle x^2 + 1 \rangle = \{ (x^2 + 1) \cdot q(x) \mid q(x) \in \mathbb{R}[x] \},$$

i.e., the principal ideal generated by $x^2 + 1$ (or the set of all multiples of $x^2 + 1$).

The quotient ring $\mathbb{R}[x]/\langle x^2+1\rangle$ contains cosets of the form

$$a(x) + \langle x^2 + 1 \rangle$$
 where $a(x) \in \mathbb{R}[x]$.

Remark: $x^2 + 1$ is unfactorable in $\mathbb{R}[x]$, which implies...

- Let $g(x) = x^2 + 1 \in \mathbb{R}[x]$. (Note: g(x) is unfactorable in $\mathbb{R}[x]$.)
- The distinct elements of $\mathbb{R}[x]/\langle g(x)\rangle$ are...

$$\mathbb{R}[x]/\langle g(x)\rangle = \{(a+bx) + \langle g(x)\rangle \mid a, b \in \mathbb{R}\}.$$

• We have an isomorphism $\mathbb{C} \cong \mathbb{R}[x]/\langle g(x) \rangle$ where

$$\underline{a+bi} \in \mathbb{C}$$
 corresponds to $(a+bx) + \langle g(x) \rangle$.

• Punchline: \mathbb{C} is a field $\Longrightarrow \mathbb{R}[x]/\langle g(x) \rangle$ is a field. (Chapter 34.)

How can we generalize?