Discuss in your group: Given this Mathematica output

In[3]:=
$$f = 4 \times ^5 + 2 \times ^3 + 4 \times + 1$$

In[4]:= PolynomialQuotientRemainder[f, $\times ^2 - 1$, \times]

Out[4]= $\{4 \times ^3 + 6 \times , 10 \times + 1\}$

Q(x)

You can ignore this.

describe how f(x), $x^2 - 1$, $4x^3 + 6x$, and 10x + 1 are related.

Answer:
$$f(x) = (x^2 - 1) \cdot (4x^3 + 6x) + (10x + 1)$$
.
 $d(x) \cdot q(x) + r(x)$

Key: deg $r(x) < \deg d(x)$, i.e., the remainder is "less" than the divisor.

Consider the polynomial ring $\mathbb{Z}_7[x]$ and a subset

$$\langle x^2 - 1 \rangle = \{ (x^2 - 1) \cdot q(x) \mid q(x) \in \mathbb{Z}_7[x] \},$$

i.e., the principal ideal generated by $x^2 - 1$ (or the set of all multiples of $x^2 - 1$).

The quotient ring $\mathbb{Z}_7[x]/\langle x^2-1\rangle$ contains cosets of the form

$$a(x) + \langle x^2 - 1 \rangle$$
 where $a(x) \in \mathbb{Z}_7[x]$.

Note: This is just like $\mathbb{Z}/5\mathbb{Z}$, which contains the cosets $a + 5\mathbb{Z}$.

Problem #2: Let
$$f(x) = 4x^5 + 2x^3 + 4x + 1 \in \mathbb{Z}_7[x]$$
 and recall that
$$f(x) = (x^2 - 1) \cdot (4x^3 + 6x) + (3x + 1).$$

- $f(x) \neq 3x + 1$ in $\mathbb{Z}_7[x]$, they're different polynomials.
- But in $\mathbb{Z}_7[x]/\langle x^2-1\rangle$, their cosets are the *same*, i.e.,

$$f(x) + \langle x^2 - 1 \rangle = (3x + 1) + \langle x^2 - 1 \rangle$$
, \leftarrow "reduce" $f(x) + \langle x^2 - 1 \rangle$.

because
$$f(x) - (3x + 1) = (x^2 - 1) \cdot (4x^3 + 6x) \in \langle x^2 - 1 \rangle$$
.

Key: Compare this with how $378 \neq 3$ in \mathbb{Z} ,

but $378 + 5\mathbb{Z} = 3 + 5\mathbb{Z}$ in $\mathbb{Z}/5\mathbb{Z}$, because $378 - 3 \in 5\mathbb{Z}$.

Problem #5: We have $x^2 + \langle x^2 - 1 \rangle = 1 + \langle x^2 - 1 \rangle$, since $x^2 - 1 \in \langle x^2 - 1 \rangle$.

Let
$$f(x) = 4x^5 + 2x^3 + 4x + 1 \in \mathbb{Z}_7[x]$$
 again. Then...

$$f(x) + \langle x^2 - 1 \rangle = (4x^5 + 2x^3 + 4x + 1) + \langle x^2 - 1 \rangle$$

$$= (4 \cdot x^2 \cdot x^2 \cdot x + 2 \cdot x^2 \cdot x + 4x + 1) + \langle x^2 - 1 \rangle$$

$$= (4 \cdot 1 \cdot 1 \cdot x + 2 \cdot 1 \cdot x + 4x + 1) + \langle x^2 - 1 \rangle$$

$$= (3x + 1) + \langle x^2 - 1 \rangle$$

Key: Treat x^2 and 1 to be the same as coset representatives.

$$\rightarrow$$
 But $x^2 \neq 1$ in $\mathbb{Z}_7[x]$ as polynomials.

Zero divisors in $\mathbb{Z}_7[x]/\langle x^2-1\rangle$

$$((x+1) + \langle x^2 - 1 \rangle) \cdot ((x-1) + \langle x^2 - 1 \rangle) = (\chi + 1)(\chi - 1) + \langle \chi^2 - 1 \rangle$$

$$= (\chi^2 - 1) + \langle \chi^2 - 1 \rangle$$

$$= (\chi^2 - 1) + \langle \chi^2 - 1 \rangle$$

$$= 0 + \langle \chi^2 - 1 \rangle$$

- $\implies (x+1) + \langle x^2 1 \rangle$ and $(x-1) + \langle x^2 1 \rangle$ are zero divisors, hence *not* units.
- $\implies \mathbb{Z}_7[x]/\langle x^2-1\rangle$ is not a field.

Theorem: Let F be a field and fix $g(x) \in F[x]$.

If g(x) is factorable, then $F[x]/\langle g(x)\rangle$ is not a field.

Example:

 $\mathbb{Z}_7[x]/\langle x^2-1\rangle$.

Proof: Assume that g(x) is factorable.

Then $g(x) = p(x) \cdot q(x)$ where $p(x), q(x) \in F[x]$, with $\deg p(x), \deg q(x) < \deg g(x)$.

Since $\deg p(x)$, $\deg q(x) < \deg g(x)$, neither p(x) nor q(x) is a multiple of g(x).

Thus, neither $p(x) + \langle g(x) \rangle$ nor $q(x) + \langle g(x) \rangle$ is equal to $0 + \langle g(x) \rangle$.

Hence, they are zero divisors in $F[x]/\langle g(x)\rangle$, so that they are not units.

Thus, $F[x]/\langle g(x)\rangle$ is not a field.