Review of additive cosets

Discuss in your group:

Consider the additive group \mathbb{Z} and its subgroup $5\mathbb{Z}$.

(a) Find all distinct cosets of $5\mathbb{Z}$.

Note: They have the form $a + 5\mathbb{Z}$ where $a \in \mathbb{Z}$.

(b) Find the smallest positive integer b such that $378 + 5\mathbb{Z} = b + 5\mathbb{Z}$.

(c) Find the coset sum $(3 + 5\mathbb{Z}) + (4 + 5\mathbb{Z})$.

Recall: We formed the quotient group

$$\mathbb{Z}/5\mathbb{Z} = \{0 + 5\mathbb{Z}, 1 + 5\mathbb{Z}, 2 + 5\mathbb{Z}, 3 + 5\mathbb{Z}, 4 + 5\mathbb{Z}\}\$$

under the operation of coset addition.

•
$$a + 5\mathbb{Z} = b + 5\mathbb{Z} \iff a - b \in 5\mathbb{Z} \pmod{b - a} \in 5\mathbb{Z}$$

$$378 + 5\mathbb{Z} = 3 + 5\mathbb{Z}$$
, since $378 - 3 = 375 \in 5\mathbb{Z}$.

•
$$(a+5\mathbb{Z})+(b+5\mathbb{Z})=(a+b)+5\mathbb{Z}$$
 (i.e., the shortcut)

$$(3+5\mathbb{Z}) + (4+5\mathbb{Z}) = 7+5\mathbb{Z} = 2+5\mathbb{Z}.$$

We've seen that $\mathbb{Z}/5\mathbb{Z} \cong \mathbb{Z}_5$ as additive groups.

Question: But \mathbb{Z}_5 is also a ring. Can we define multiplication in $\mathbb{Z}/5\mathbb{Z}$ and turn it into a ring, too? How?!

• For instance, what should $(3 + 5\mathbb{Z}) \cdot (4 + 5\mathbb{Z})$ be?

Answer: $(3 + 5\mathbb{Z}) \cdot (4 + 5\mathbb{Z}) = 3 \cdot 4 + 5\mathbb{Z} = 2 + 5\mathbb{Z}$.

Key: Adapt the shortcut for coset multiplication.

Definition: Multiply cosets in $\mathbb{Z}/5\mathbb{Z}$ by $(a + 5\mathbb{Z}) \cdot (b + 5\mathbb{Z}) = a \cdot b + 5\mathbb{Z}$.

$$(a+5\mathbb{Z})\cdot(b+5\mathbb{Z}) = a\cdot b + 5\mathbb{Z}$$

Thus, $2 + 5\mathbb{Z}$ and $3 + 5\mathbb{Z}$ are units with

$$(2+5\mathbb{Z})^{-1} = 3+5\mathbb{Z}$$
 and $(3+5\mathbb{Z})^{-1} = 2+5\mathbb{Z}$.

Conclusion: $\mathbb{Z}/5\mathbb{Z}$ is a quotient ring, and it's (ring) isomorphic to \mathbb{Z}_5 .

Consider the polynomial ring $\mathbb{Z}_3[x]$ and a subset

$$\langle x^2 \rangle = \{ x^2 \cdot q(x) \mid q(x) \in \mathbb{Z}_3[x] \},$$

i.e., the principal ideal generated by x^2 (or the set of all multiples of x^2).

The quotient ring $\mathbb{Z}_3[x]/\langle x^2\rangle$ contains cosets of the form

$$a(x) + \langle x^2 \rangle$$
 where $a(x) \in \mathbb{Z}_3[x]$.

Compare this with $\mathbb{Z}/5\mathbb{Z}$ which contains cosets of the form

$$a + 5\mathbb{Z}$$
 where $a \in \mathbb{Z}$.

Key: $\langle x^2 \rangle$ will play the role of $5\mathbb{Z}$. (Both are *ideals*.)

Also,
$$5\mathbb{Z} = \{5 \cdot q \mid q \in \mathbb{Z}\} = \langle 5 \rangle$$
.

Problem #2: Let $\alpha(x)$, $\beta(x) \in \mathbb{Z}_3[x]$ where

$$\alpha(x) = 2x^7 + x^5 + 2x^4 + 2x + 1$$
 and $\beta(x) = 2x + 1$.

- $\alpha(x) \neq \beta(x)$ in $\mathbb{Z}_3[x]$, they're different polynomials.
- But in $\mathbb{Z}_3[x]/\langle x^2 \rangle$, their cosets are the *same*, i.e.,

$$\alpha(x) + \langle x^2 \rangle = \beta(x) + \langle x^2 \rangle$$
, because $\alpha(x) - \beta(x) \in \langle x^2 \rangle$.

Key: Compare this with how $378 \neq 3$ in \mathbb{Z} ,

but $378 + 5\mathbb{Z} = 3 + 5\mathbb{Z}$ in $\mathbb{Z}/5\mathbb{Z}$, because $378 - 3 \in 5\mathbb{Z}$.

Problem #4: The distinct elements of $\mathbb{Z}_3[x]/\langle x^2 \rangle$ are

$$\mathbb{Z}_{3}[x]/\langle x^{2}\rangle = \{(ax+b) + \langle x^{2}\rangle \mid a, b \in \mathbb{Z}_{3}\}$$

$$= \{(0x+0) + \langle x^{2}\rangle, (0x+1) + \langle x^{2}\rangle, (0x+2) + \langle x^{2}\rangle, (1x+0) + \langle x^{2}\rangle, (1x+1) + \langle x^{2}\rangle, (1x+2) + \langle x^{2}\rangle, (2x+0) + \langle x^{2}\rangle, (2x+1) + \langle x^{2}\rangle, (2x+2) + \langle x^{2}\rangle\}$$

(Watch Proof of the Day for why these are actually distinct.)

Units in $\mathbb{Z}_3[x]/\langle x^2 \rangle$

$$((x+1) + \langle x^2 \rangle) \cdot ((2x+1) + \langle x^2 \rangle) = \underbrace{(x+1)(2x+1)}_{\mathbb{O}} + \langle x^2 \rangle$$

$$= \underbrace{(2x^2 + 3x + 1)}_{\mathbb{O}} + \langle x^2 \rangle$$

$$= \underbrace{(2x^2 + 1)}_{\mathbb{O}} - \underbrace{(2x$$

$$\implies (x+1) + \langle x^2 \rangle$$
 and $(2x+1) + \langle x^2 \rangle$ are units.

Zero divisors in $\mathbb{Z}_3[x]/\langle x^2 \rangle$

$$(x + \langle x^2 \rangle) \cdot (x + \langle x^2 \rangle) = x^2 + \langle x^2 \rangle = 0 + \langle x^2 \rangle.$$

$$\neq 0 + \langle x^2 \rangle.$$
just like $5 + 5\mathbb{Z} = 0 + 5\mathbb{Z}.$

- $\implies x + \langle x^2 \rangle$ is a zero divisor, hence *not* a unit.
- $\Longrightarrow \mathbb{Z}_3[x]/\langle x^2 \rangle$ is not a field.