Discuss in your group: Consider $f(x) = x^2 + 1$, $g(x) = 4x + 5 \in \mathbb{R}[x]$.

- (a) Compute f(2) and g(2), and then f(2) + g(2).
- (b) Compute (f+g)(2), i.e., first add the polynomials, then evaluate the sum at x=2.
- (c) How do your answers in parts (a) and (b) compare? Is this surprising?
- (d) Compare $f(2) \cdot g(2)$ and $(f \cdot g)(2)$. Any conjectures? Can you prove it? How?!

Remarks: 18 = 5 + 13 $65 = 5 \cdot 13$

- We have (f+g)(2) = f(2) + g(2) and $(f \cdot g)(2) = f(2) \cdot g(2)$.
- These hold for all f(x), $g(x) \in \mathbb{R}[x]$. \longleftarrow For you to prove!

Define $\theta : \mathbb{R}[x] \to \mathbb{R}$ where $\theta(f(x)) = f(2)$ for all $f(x) \in \mathbb{R}[x]$.

Example: If $f(x) = x^2 + 1$, then $\theta(f(x)) = f(2) = 5$.

This is called the evaluation map.

Observation: Using θ , we can rewrite...

$$(f+g)(2) = f(2) + g(2) \iff \theta(f(x) + g(x)) = \theta(f(x)) + \theta(g(x))$$

$$(f \cdot g)(2) = f(2) \cdot g(2) \iff \theta(f(x) \cdot g(x)) = \theta(f(x)) \cdot \theta(g(x))$$

Thus, θ is an example of a ring homomorphism. (Nothing special about 2 here.)

Definition. Given rings R and S, a function $\theta: R \to S$ is called a ring homomorphism if, for all $a, b \in R$,

$$\theta(a +_{\mathbf{R}} b) = \theta(a) +_{\mathbf{S}} \theta(b) \text{ and } \theta(a \cdot_{\mathbf{R}} b) = \theta(a) \cdot_{\mathbf{S}} \theta(b).$$

Note: We have $R = \mathbb{R}[x]$ and $S = \mathbb{R}$ for the evaluation map example.

(This picture depicts $\theta(a+b) = \theta(a) + \theta(b)$.)

Consider $\varphi: \mathbb{Z} \to \mathbb{Z}_5$ where $\varphi(a) = a \pmod{5}$ for all $a \in \mathbb{Z}$.

Define the kernel of φ as: $\ker \varphi = \{a \in \mathbb{Z} \mid \varphi(a) = 0\}.$

Note: The kernel elements map to the additive identity.

Remarks: We have $\ker \varphi = 5\mathbb{Z}$, and...

- $5\mathbb{Z}$ is an additive subgroup of the domain \mathbb{Z} .
- 5Z satisfies the product absorption property:

If $r \in \mathbb{Z}$ (the domain) and $a \in 5\mathbb{Z}$, then $r \cdot a \in 5\mathbb{Z}$.

Terminology: $5\mathbb{Z}$ is an example of an *ideal* of \mathbb{Z} . (See Chapter 31.)

Theorem: Let $\theta: R \to S$ be a ring homomorphism with kernel

$$K = \ker \theta = \{ r \in R \mid \theta(r) = 0_S \}.$$

If $r \in R$ and $a \in K$, then $r \cdot a \in K$. (Product absorption property.)

Picture:

Proof: Assume $r \in R$ and $a \in K$. Then $\Theta(a) = O_S$.

We have
$$\Theta(r \cdot a) = \Theta(r) \cdot \Theta(a) = \Theta(r) \cdot O_s = O_s$$
.
Hence, $\Theta(r \cdot a) = O_s$.

Thus, $r \cdot a \in K$.