Working in F[x]

We'll work (mostly) in F[x] where F is a field.

• Examples: $\mathbb{R}[x]$ and $\mathbb{Z}_7[x]$, but not $\mathbb{Z}_9[x]$ or $\mathbb{Z}[x]$.

Big picture stuff:

The ring of integers \mathbb{Z} and the polynomial ring F[x] have many structural similarities, e.g., both have the division algorithm.

- In \mathbb{Z} : $a = b \cdot q + r$ where $0 \le r < b$.
- In F[x]: $f(x) = g(x) \cdot q(x) + r(x)$ where r(x) is "less" than g(x).

Discuss in your group: Do you agree or disagree with our friends?

Elizabeth: The polynomial $x^2 + 1$ is unfactorable.

• $x^2 + 1$ is unfactorable in $\mathbb{R}[x]$.

$$\chi^2 + \xi \chi + \xi$$

• $x^2 + 1 = (x+2)(x+3)$ is factorable in $\mathbb{Z}_5[x]$.

Key: We need to say, " $x^2 + 1$ is unfactorable in [blah]."

Anita: Actually, $x^2 + 1 = 3 \cdot \left(\frac{1}{3}x^2 + \frac{1}{3}\right)$ is factorable.

Key: Both factors must be "less" than $x^2 + 1$.

Definition. Let $f(x) \in F[x]$ where F is a field, with $\deg f(x) \ge 1$ (i.e., f(x) is not a constant polynomial).

- We say f(x) is factorable in F[x] if we can write $f(x) = p(x) \cdot q(x)$ where $\deg p(x)$, $\deg q(x) < \deg f(x)$.
 - \rightarrow i.e., both factors are "less" than f(x).
- Otherwise, we say f(x) is unfactorable in F[x].

Remark: Factorable / unfactorable polynomials are analogous to composite / prime integers.

$$\deg f(x) = 1$$

Example. $f(x) = 2x - 7 \in \mathbb{R}[x]$ is unfactorable.

Theorem. Let $f(x) \in F[x]$. If deg f(x) = 1, then f(x) is unfactorable in F[x].

Remarks:

- Intuitively, we cannot factor f(x) into "smaller" factors.
- See Chapter 30 reading for a complete proof.

Theorem. Let $f(x) \in F[x]$ with $\deg f(x) \ge 2$.

- (a) If f(x) has a root $\alpha \in F$, then f(x) is factorable in F[x].
 - " α is a root of f(x)" means $f(\alpha) = 0$.

$$\geq 2 = 1 < deg f(x)$$

- Thus, $f(x) = (x \alpha) \cdot q(x)$ where $\deg f(x) = \deg(x \alpha) + \deg q(x)$.
- Hence, $\deg(x \alpha)$, $\deg q(x) < \deg f(x)$.
- (b) Assume $\deg f(x) = 2$ or 3.

If f(x) has no root in F, then f(x) is unfactorable in F[x].

Note: We can't use Theorem (b) if $\deg f(x) > 3$. (See Problem #6.)

Theorem: Let $f(x) \in F[x]$ with $\deg f(x) = 2$ or 3.

If f(x) has no root in F, then f(x) is unfactorable in F[x].

Proof outline: We'll prove the contrapositive, namely...

If f(x) is factorable in F[x], then f(x) has a root in F.

- Assume f(x) is factorable in F[x].
- Therefore, $f(x) = p(x) \cdot q(x)$, where deg p(x), deg $q(x) < \deg f(x)$. 2 or 3
- Then $\deg f(x) = \deg p(x) + \deg q(x) \implies \deg p(x) = 1$ or $\deg q(x) = 1$.
- If deg p(x) = 1, then p(x) = ax + b, which has a root $\alpha = -a^{-1}b$.
- Thus, $f(\alpha) = p(\alpha) \cdot q(\alpha) = 0 \cdot q(\alpha) = 0$.
- Hence, f(x) has a root $\alpha \in F$.

Proceed

similarly.

