Divisor

Example. The following mean the same thing:

- 24 is a multiple of 4.
- 4 is a divisor of 24. (Notation: 4 | 24.)

Not the same as $\frac{24}{4}$.

Non-example. The following mean the same thing:

- 32 is *not* a multiple of 7.
- 7 is not a divisor of 32. (Notation: $7 \nmid 32$.)

Discuss in your group:

- (a) Is 6 a divisor of 72? Why or why not?
- (b) Is 7 a divisor of 90? Why or why not?
- (c) Write down a precise definition of "d is a divisor of n."

 Note: Here, d and n are integers.
- (d) Find the greatest common divisor of 5 and 8.
- (e) Find integers x and y such that 5x + 8y = 1.

Examples:

$$n = a \cdot K$$

• 6 is a divisor of 72, because $72 = 6 \cdot 12$.

• 7 is not a divisor of 90. There's no integer k where $90 = 7 \cdot k$.

Definition. Let $d, n \in \mathbb{Z}$. We say that d is a divisor of n when $n = d \cdot k$ for some integer k (and we write $d \mid n$).

Examples:

- gcd(5,8) = 1. (Thus, 5 and 8 are relatively prime.) 5x + 8y = 1 has an integer solution, e.g., (-3,2). (5,-3) (-11,7)

Theorem (GCD theorem): Let $a, b \in \mathbb{Z}$. If gcd(a, b) = 1, then there exist integers x and y such that ax + by = 1.

Remark. We will not prove the GCD theorem today. Instead, we will use it to prove a bunch of other statements. **Theorem:** If there exist $x, y \in \mathbb{Z}$ with ax + by = 1, then gcd(a, b) = 1.

Proof: Assume there exist $x, y \in \mathbb{Z}$ with ax + by = 1. Let d = gcd(a, b). Thus, dla, dlb, and d>0. So, a = dK and b = dj where $K, j \in \mathbb{Z}$. Now ax + by = (ak)x + (aj)y= d(Kx + jy). Hence d(Kx+jy) = 1 so that d/1. So, d=1 or -1, but d>0. Then d=1. Thus, gcd(a, b) = 1.

Rough draft: d = gcd(a, b). ⇒ d/a, d/b (d>0). \Rightarrow a = dK, b = dj. qx + by = (dx)x + (dj)y $= \lambda(Kx + jy).$ $\Rightarrow d(\kappa \times + j \gamma) = 1, (a|1)$ \Rightarrow d = 1 or \Rightarrow .