Discuss in your group:

(a) Use "long division" to find the quotient and remainder when dividing 5273 by 6.

(b) Based on your work in part (a), fill in these blanks:

$$5273 = 6 \cdot (878) + (5)$$

(c) How do you know that you found the correct remainder?

Divide
$$f(x) = 5x^4 + x^3 - 3x^2 + 4x - 3$$
 by $g(x) = x^2 + 1$ in $\mathbb{R}[x]$.

$$\frac{5\chi^{2} + \chi - 8}{x^{2} + 1)5x^{4} + x^{3} - 3x^{2} + 4x - 3} \leftarrow \text{quotient}$$

$$\frac{1}{1 - (5 - \chi^{4}) + 5x^{2}} \times \frac{1}{1 - (\chi^{3}) + 5} \times \frac{1}{1 - ($$

Example: Let
$$f(x) = 5x^4 + x^3 - 3x^2 + 4x - 3$$
 and $g(x) = x^2 + 1$ in $\mathbb{R}[x]$.

We used long division to obtain:
$$f(x) = (x^2 + 1) \cdot q(x) + (3x + 5)$$
.

y quotient

Key: The degree of the remainder r(x) = 3x + 5 is less than the degree of the divisor $g(x) = x^2 + 1$.

Division Algorithm. Let $f(x), g(x) \in F[x]$ where F is a field with $g(x) \neq 0$. Then there exist $q(x), r(x) \in F[x]$ such that

$$f(x) = g(x) \cdot q(x) + r(x)$$

See Chapter 29.

with either r(x) = 0 or $\deg r(x) < \deg g(x)$.

Example: Let $f(x) = 4x^3 - 9x^2 + 5x - 6 \in \mathbb{R}[x]$. We have...

•
$$f(2) = 4 \cdot 2^3 - 9 \cdot 2^2 + 5 \cdot 2 - 6 = 0$$
 (Then how does $f(x)$ factor?)

•
$$f(x) = (x-2) \cdot (4x^2 - x + 3)$$
 \leftarrow Using long division.

Terminologies: The following mean the same thing:

- f(x) is a multiple of x-2.
- x-2 is a factor of f(x). \leftarrow **Notation:** $(x-2) \mid f(x)$.

Example: Let $f(x) = 4x^3 - 9x^2 + 5x - 6 \in \mathbb{R}[x]$. We have...

harder
$$f(2) = 4 \cdot 2^3 - 9 \cdot 2^2 + 5 \cdot 2 - 6 = 0$$

harder $f(x) = (x-2) \cdot (4x^2 - x + 3)$

Factor theorem. Let F be a field, $a \in F$, and $f(x) \in F[x]$. Then

$$f(a) = 0$$
 if and only if $(x - a) \mid f(x)$.

Proof know-how: To prove that $g(x) \mid f(x)$, first write

with r(x) "less" than g(x). Then show that r(x) = 0.

Theorem: Let F be a field, $a \in F$, and $f(x) \in F[x]$. If f(a) = 0, then $(x - a) \mid f(x)$.

Proof: Assume f(a) = 0.

Let
$$f(x) = (x - a) \cdot q(x) + r(x)$$
 where $q(x), r(x) \in F[x]$,

with r(x) = 0 or $\deg r(x) < \deg(x - a)$.

In either case, r(x) is a constant. Hence, $f(x) = (x - a) \cdot q(x) + r$ where $r \in F$.

Then, $r = f(x) - (x - a) \cdot q(x)$. And substituting x = a gives...

$$r = f(a) - (a - a) \cdot q(a) = 0 - 0 \cdot q(a) = 0.$$

Therefore, $f(x) = (x - a) \cdot q(x)$.

Thus, $(x-a) \mid f(x)$.