Definition. Let R be a commutative ring. The polynomial ring R[x] is the set of all polynomials with coefficients in R.

Examples: $\mathbb{Z}[x]$, $\mathbb{R}[x]$, $\mathbb{Z}_5[x]$, $\mathbb{Z}_m[x]$.

- $f(x) = 2x^3 4x + 5$ is an element of $\mathbb{Z}[x]$. (Note that $2, -4, 5 \in \mathbb{Z}$.)
- In $\mathbb{Z}_5[x]$: 7x = 2x, but $x^7 \neq x^2$ (i.e., reduce only the *coefficients* modulo 5).
- $x^{-1} = \frac{1}{x}$ is not a polynomial, since the exponents of x must be non-negative.

More generally, an element of R[x] has the form

$$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0$$

where the coefficients a_i are in R. (Note: $n \geq 0$.)

Discuss in your group: What is the *degree* of each polynomial?

$$f(x) = 2x^3 - 4x + 5$$
 and $g(x) = x^2 + 1$.

Definition: Let f(x) be a nonzero polynomial in R[x]. $\leftarrow R$ is a commutative ring. Then the degree of f(x) is the highest exponent in f(x).

- $deg(2x^3 4x + 5) = 3$
- $\deg(x^2 + 1) = 2$
- $deg(7) = deg(7x^0) = 0 \leftarrow all \ nonzero \ constants \ have \ degree \ 0.$

Remarks:

- \bullet deg f(x) must be a non-negative integer.
- The degree of $0 \in R[x]$ is undefined. (We'll see why soon.)

Example. Consider these polynomials in $\mathbb{Z}[x]$:

•
$$f(x) = 3x^{15} + 4x^3 + 2 \leftarrow \deg f(x) = 15$$

•
$$g(x) = 6x^8 + 5x + 3$$
 $\leftarrow \deg g(x) = 8$

Their product is...

$$\frac{f(x) \cdot g(x)}{= (3 \cdot 6) \cdot x^{15+8}} + \text{(lower degree terms)}$$

$$= (3 \cdot 6) \cdot x^{15+8} + \text{(lower degree terms)}$$

$$\Rightarrow \neq 0, \text{ since } \mathbb{Z} \text{ is an integral domain.}$$

Thus,
$$\deg f(x) \cdot g(x) = 15 + 8$$
.

Theorem. Let f(x), $g(x) \in R[x]$ where R is an integral domain, with f(x), $g(x) \neq 0$. Then

$$\deg f(x) \cdot g(x) = \deg f(x) + \deg g(x).$$

Application	ı:	$\mathbb{Z}_7[x]$	$\mathbb{Z}[x]$	$\mathbb{R}[x]$
	units	1, 2, 3, 4, 5, 6	1, -1	All nonzero reals

Theorem: If R is an integral domain (like \mathbb{Z}_7 , \mathbb{Z} , or \mathbb{R}). Then the only units in R[x] are the units of R.

Note: Non-constant polynomials are *not* units in R[x].

Theorem: Let R be an integral domain. Then the only units in R[x] are the units of R.

Proof: Suppose f(x), $g(x) \in R[x]$ are units (and a multiplicative inverse pair).

We must show that f(x) and g(x) are constant polynomials.

Since f(x), g(x) are multiplicative inverses, we have $f(x) \cdot g(x) = 1$.

$$\implies \deg f(x) \cdot g(x) = \deg 1$$

$$0 + 0 = 0$$

$$\implies \deg f(x) + \deg g(x) = 0 \text{ (but degrees are non-negative, so...)}$$

$$\implies \deg f(x) = 0$$
 and $\deg g(x) = 0$

Therefore, f(x) and g(x) are constant polynomials.

But strange things happen if R is *not* an integral domain...

- In $\mathbb{Z}_9[x]$: $(1+3x)\cdot(1+6x)=1+9x+18x^2=1$, i.e., non-constant units!
- In $\mathbb{Z}_6[x]$: $(2+4x) \cdot 3x^2 = 6x^2 + 12x^3 = 0$, i.e., zero divisors!

Punchline:

- We want to work in R[x] where R is an integral domain.
- In fact, R being a field is even better (e.g., $\mathbb{Z}_7[x]$, $\mathbb{R}[x]$), and that's what we'll do most of the time.