Discuss in your group:

- Classify each nonzero element of \mathbb{Z}_{12} as a unit, a zero divisor, neither, or both.
- Do the same in \mathbb{Z} .

	\mathbb{Z}_{12}	\mathbb{Z}
units	$U_{12} = \{1, 5, 7, 11\}$	1, -1
ZDs	2, 3, 4, 6, 8, 9, 10	none!
neither	none (0)	All integers except ± 1 (0)
-both	none	none

Recall: "Both" isn't possible (proved last time).

Definition. A commutative ring is called an integral domain if it does *not* contain any zero divisors.

- \bullet \mathbb{Z} is an integral domain.
- \mathbb{Z}_{12} is *not* an integral domain.

		\mathbb{Z}_{12}		\mathbb{Z}	
	units	$U_{12} = \{1, 5, 7, 11\}$		1, -1	
*	ZDs	2, 3, 4, 6, 8, 9, 10		none!	
	neither	none	(0)	All integers except ± 1	(0)
•	both	none		none	

Cancellation (in an integral domain)

• In
$$\mathbb{Z}$$
: $3b = 3c \implies b = c$.

• In
$$\mathbb{Z}_{12}$$
: $3 \cdot 10 = 3 \cdot 6$, but $10 \neq 6$.

Theorem: Let a, b, c be elements of an integral domain with $a \neq 0$. If ab = ac, then b = c.

Proof: Assume ab = ac. Thus, $ab - ac = 0 \implies a \cdot (b - c) = 0$.

Since we're in an integral domain, a = 0 or b - c = 0. (Zero product property.)

But $a \neq 0$, which implies b - c = 0. Thus, b = c.

Proof

fails

in \mathbb{Z}_{12}

$$3 \cdot 10 = 3 \cdot 6 \implies 3 \cdot 10 - 3 \cdot 6 = 0$$

$$\implies$$
 3 \((10 - 6) = 0 \(\text{(i.e., 3)} \)4 = 0 \(\text{in } \mathbb{Z}_{12}\)

$$\implies$$
 3 = 0 or 10 - 6 = 0 (false!)

Elizabeth: \mathbb{Z}_7 and \mathbb{R} are *almost* multiplicative groups. (Because every nonzero element has a multiplicative inverse.)

Definition. A commutative ring is called a field if every nonzero element is a unit.

Key: In a field, we can always "divide" (i.e., multiply by a^{-1}), except when a = 0.

Theorem: If R is a field, then R is an integral domain.

Proof outline: Assume R is a field.

- Let $\alpha \in R$, $\alpha \neq 0$.
- Since R is a field, α is a unit.
- Then α is not a zero divisor, since α can't be both.

Thus, R is an integral domain.

Some Food for Thought

Consider the equation $x^2 - 6x + 8 = 0$.

Factoring gives:
$$(x-2)(x-4) = 0 \implies x-2 = 0 \text{ or } x-4 = 0$$

$$\implies x = 2 \text{ or } x = 4$$

But if we're in \mathbb{Z}_{15} :

- x = 7 is possible, because (7-2)(7-4) = 0. $\leftarrow 5 \cdot 3 = 0$
- x = 14 is possible, because (14 2)(14 4) = 0. $\leftarrow 12 \cdot 10 = 0$

Conclusion: Funny things happen when we're not in an integral domain!

Solve $x^2 - 6x + 8 = 0$ in \mathbb{Z}_{15} using the *quadratic formula*.

Recall: When
$$ax^2 + bx + c = 0$$
, we have $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

$$X = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 1 \cdot 8}}{2 \cdot 1}$$

$$= \frac{6 \pm \sqrt{4}}{2} = \frac{6 \pm \sqrt{49}}{2} = \frac{6 \pm \sqrt{22}}{2} = \frac{6 \pm \sqrt{22}}{2}$$

$$= \frac{14 \text{ or } -8}{2}$$

$$= \frac{14 \text{ or } -8}{2}$$