Until now: The set of integers \mathbb{Z} is a group under addition.

New perspective: \mathbb{Z} has two operations, addition and multiplication. The same can be said about the following sets:

- \mathbb{R} = the set of real numbers
- $\mathbb{Z}_{12} = \{0, 1, 2, 3, \dots, 10, 11\}$

Observation: There are *properties* of addition and multiplication that are common to \mathbb{Z} , \mathbb{R} , and \mathbb{Z}_{12} . For example, a + b = b + a in all three sets.

Discuss in your group: Name other properties of addition and multiplication that are common to \mathbb{Z} , \mathbb{R} , and \mathbb{Z}_{12} .

Properties of + and \cdot in \mathbb{Z} (and \mathbb{R} and \mathbb{Z}_{12})

- 1. \mathbb{Z} is closed under addition.
- 2. (a + b) + c = a + (b + c) for all $a, b, c \in \mathbb{Z}$.
- 3. There exists $0 \in \mathbb{Z}$ such that 0 + a = a and a + 0 = a for all $a \in \mathbb{Z}$.
- 4. For $a \in \mathbb{Z}$, there exists $-a \in \mathbb{Z}$ s.t. a + (-a) = 0 and (-a) + a = 0.
- 5. a+b=b+a for all $a, b \in \mathbb{Z}$.
- 6. \mathbb{Z} is closed under multiplication.
- 7. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in \mathbb{Z}$.
- 8. There exists $1 \in \mathbb{Z}$ such that $1 \cdot a = a$ and $a \cdot 1 = a$ for all $a \in \mathbb{Z}$.
- 9. $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ and $(b+c) \cdot a = (b \cdot a) + (c \cdot a)$ for all $a, b, c \in \mathbb{Z}$.

Definition: A set R is called a ring if it has two operations (denoted + and \cdot) satisfying properties 1 through 9.

- R is a commutative group under addition (properties 1-5).
- R is never a multiplicative group, since the element $0 \in R$ does not have a multiplicative inverse.
- R need not be commutative under multiplication. (More on this later.)
- Use 0 and 1 to denote the additive and multiplicative identities.

$$3 \in \mathbb{Z}$$
 $-3 \in \mathbb{Z}$ $3^{-1} \notin \mathbb{Z}$

• Given an element $a \in R$, use -a (always exists) and a^{-1} (sometimes exists) to denote its additive and multiplicative inverses.

Examples: In the ring \mathbb{Z}_{10} ...

- $3 \cdot 7 = 1 \implies 3$ and 7 are units. $3^{-1} = 7$, $7^{-1} = 3$.
- $5 \cdot 2 = 0 \implies 5$ and 2 are zero divisors.

Definitions. Let R be a ring.

- An element $u \in R$ is a unit if it has a multiplicative inverse in R (denoted u^{-1}).
- A nonzero element $a \in R$ is a zero divisor if there exists a nonzero $b \in R$ such that $a \cdot b = 0$.

Remark. In any ring...

- 1 is a unit, because $1 \cdot 1 = 1$.
- 0 is neither a unit nor a zero divisor.

Unit, zero divisor, neither, or both? (Classify nonzero elements)

Nonzero elts of	\mathbb{Z}_{12}	\mathbb{Z}_7	\mathbb{Z}	\mathbb{R}
units	$U_{12} = \{1, 5, 7, 11\}$	$U_7 = \{1, 2, 3, 4, 5, 6\}$	1, -1	\mathbb{R}^* (all nonzero elts)
ZDs	2, 3, 4, 6, 8, 9, 10	none	none	none
neither	none (0)	none (0)	All integers (0) except 1, -1	none (0)
both	none	none	none	none

Theorem. A ring element $\alpha \in R$ cannot be both a unit and a zero divisor.

Proof. For contradiction, assume α is both a unit and a zero divisor.

Thus, there exists $\alpha^{-1} \in R$ such that $\alpha^{-1} \cdot \alpha = 1$.

Also, there exists $\beta \in R$, $\beta \neq 0$, such that $\alpha \cdot \beta = 0$.

Multiply both sides of $\alpha \cdot \beta = 0$ on the left by α^{-1} to get:

$$\alpha^{-1} \cdot (\alpha \cdot \beta) = \alpha^{-1} \cdot 0 \implies (\alpha^{-1} \cdot \alpha) \cdot \beta = \alpha^{-1} \cdot 0$$

$$\implies 1 \cdot \beta = 0 \quad \text{(Reading: Why } \alpha^{-1} \cdot 0 = 0.\text{)}$$

$$\implies \beta = 0,$$

which contradicts $\beta \neq 0$. Thus, such an element α does not exist.

Next time...

- In a finite ring, a nonzero α can't be neither (like $2 \in \mathbb{Z}$), i.e., it must be either a unit or a zero divisor.
- \mathbb{Z}_7 and \mathbb{R} are *almost* multiplicative groups.

Nonzero elts of	\mathbb{Z}_{12}	\mathbb{Z}_7	\mathbb{Z}	\mathbb{R}
units	$U_{12} = \{1, 5, 7, 11\}$	$U_7 = \{1, 2, 3, 4, 5, 6\}$	1, -1	R* (all nonzero elts)
m ZDs	2, 3, 4, 6, 8, 9, 10	none	none	none
neither	√none (0)	√none (0)	All integers (0) except 1, -1	none (0)