Until now: The set of integers \mathbb{Z} is a group under addition. New perspective: \mathbb{Z} has two operations, addition and multiplication. The same can be said about the following sets: - \mathbb{R} = the set of real numbers - $\mathbb{Z}_{12} = \{0, 1, 2, 3, \dots, 10, 11\}$ **Observation:** There are *properties* of addition and multiplication that are common to \mathbb{Z} , \mathbb{R} , and \mathbb{Z}_{12} . For example, a + b = b + a in all three sets. **Discuss in your group:** Name other properties of addition and multiplication that are common to \mathbb{Z} , \mathbb{R} , and \mathbb{Z}_{12} . ## Properties of + and \cdot in \mathbb{Z} (and \mathbb{R} and \mathbb{Z}_{12}) - 1. \mathbb{Z} is closed under addition. - 2. (a + b) + c = a + (b + c) for all $a, b, c \in \mathbb{Z}$. - 3. There exists $0 \in \mathbb{Z}$ such that 0 + a = a and a + 0 = a for all $a \in \mathbb{Z}$. - 4. For $a \in \mathbb{Z}$, there exists $-a \in \mathbb{Z}$ s.t. a + (-a) = 0 and (-a) + a = 0. - 5. a+b=b+a for all $a, b \in \mathbb{Z}$. - 6. \mathbb{Z} is closed under multiplication. - 7. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in \mathbb{Z}$. - 8. There exists $1 \in \mathbb{Z}$ such that $1 \cdot a = a$ and $a \cdot 1 = a$ for all $a \in \mathbb{Z}$. - 9. $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ and $(b+c) \cdot a = (b \cdot a) + (c \cdot a)$ for all $a, b, c \in \mathbb{Z}$. **Definition:** A set R is called a ring if it has two operations (denoted + and \cdot) satisfying properties 1 through 9. - R is a commutative group under addition (properties 1-5). - R is never a multiplicative group, since the element $0 \in R$ does not have a multiplicative inverse. - R need not be commutative under multiplication. (More on this later.) - Use 0 and 1 to denote the additive and multiplicative identities. $$3 \in \mathbb{Z}$$ $-3 \in \mathbb{Z}$ $3^{-1} \notin \mathbb{Z}$ • Given an element $a \in R$, use -a (always exists) and a^{-1} (sometimes exists) to denote its additive and multiplicative inverses. **Examples:** In the ring \mathbb{Z}_{10} ... - $3 \cdot 7 = 1 \implies 3$ and 7 are units. $3^{-1} = 7$, $7^{-1} = 3$. - $5 \cdot 2 = 0 \implies 5$ and 2 are zero divisors. **Definitions.** Let R be a ring. - An element $u \in R$ is a unit if it has a multiplicative inverse in R (denoted u^{-1}). - A nonzero element $a \in R$ is a zero divisor if there exists a nonzero $b \in R$ such that $a \cdot b = 0$. Remark. In any ring... - 1 is a unit, because $1 \cdot 1 = 1$. - 0 is neither a unit nor a zero divisor. Unit, zero divisor, neither, or both? (Classify nonzero elements) | Nonzero elts of | \mathbb{Z}_{12} | \mathbb{Z}_7 | \mathbb{Z} | \mathbb{R} | |-----------------|----------------------------|------------------------------|-----------------------------------|-----------------------------------| | units | $U_{12} = \{1, 5, 7, 11\}$ | $U_7 = \{1, 2, 3, 4, 5, 6\}$ | 1, -1 | \mathbb{R}^* (all nonzero elts) | | ZDs | 2, 3, 4, 6,
8, 9, 10 | none | none | none | | neither | none (0) | none (0) | All integers (0) except 1, -1 | none (0) | | both | none | none | none | none | **Theorem.** A ring element $\alpha \in R$ cannot be both a unit and a zero divisor. **Proof.** For contradiction, assume α is both a unit and a zero divisor. Thus, there exists $\alpha^{-1} \in R$ such that $\alpha^{-1} \cdot \alpha = 1$. Also, there exists $\beta \in R$, $\beta \neq 0$, such that $\alpha \cdot \beta = 0$. Multiply both sides of $\alpha \cdot \beta = 0$ on the left by α^{-1} to get: $$\alpha^{-1} \cdot (\alpha \cdot \beta) = \alpha^{-1} \cdot 0 \implies (\alpha^{-1} \cdot \alpha) \cdot \beta = \alpha^{-1} \cdot 0$$ $$\implies 1 \cdot \beta = 0 \quad \text{(Reading: Why } \alpha^{-1} \cdot 0 = 0.\text{)}$$ $$\implies \beta = 0,$$ which contradicts $\beta \neq 0$. Thus, such an element α does not exist. ## Next time... - In a finite ring, a nonzero α can't be neither (like $2 \in \mathbb{Z}$), i.e., it must be either a unit or a zero divisor. - \mathbb{Z}_7 and \mathbb{R} are *almost* multiplicative groups. | Nonzero elts of | \mathbb{Z}_{12} | \mathbb{Z}_7 | \mathbb{Z} | \mathbb{R} | |-----------------|----------------------------|------------------------------|-----------------------------------|-----------------------| | units | $U_{12} = \{1, 5, 7, 11\}$ | $U_7 = \{1, 2, 3, 4, 5, 6\}$ | 1, -1 | R* (all nonzero elts) | | m ZDs | 2, 3, 4, 6,
8, 9, 10 | none | none | none | | neither | √none (0) | √none (0) | All integers (0) except 1, -1 | none (0) |