Let G be a (multiplicative) group and H its subgroup.

Coset multiplication shortcut: For aH, $bH \in G/H$, $aH \cdot bH = (ab)H$.

Today's goal: Complete the missing piece ???

Coset multiplication shortcut: For aH, $bH \in G/H$, $aH \cdot bH = (ab)H$.

Digging deeper: Both $aH \cdot bH$ and (ab)H are sets.

- An element in $aH \cdot bH$ looks like $\alpha\beta$, where $\alpha \in aH$ and $\beta \in bH$.
- An element in (ab)H looks like (ab)h for some $h \in H$.

Set equality: To prove that $aH \cdot bH = (ab)H$, we must show...

- $(ab)H \subseteq aH \cdot bH$ (this is *always* true)
- $aH \cdot bH \subseteq (ab)H$ (this is *sometimes* true... but when?)

Problem #4: Let $K = \{\varepsilon, r_{90}, r_{180}, r_{270}\}$ be a subgroup of D_4 .

- $vK = \{v\varepsilon, vr_{90}, vr_{180}, vr_{270}\} = \{v, d', h, d\} \leftarrow \text{left coset}$
- $Kv = \{\varepsilon v, r_{90}v, r_{180}v, r_{270}v\} = \{v, d, h, d'\} \leftarrow \text{right coset}$

Observations:

- vK = Kv. (In fact, we have aK = Ka for all $a \in D_4$.)
- But that does not mean vk = kv for each $k \in K$.
- **Key:** Instead, we must say vk = jv for some $j \in K$.

 $vr_{90} = r_{270}v$, for example.

Definition. Let *H* be a subgroup of a group *G*. Then *H* is called a *normal subgroup* of *G* if gH = Hg for all $g \in G$.

- In other words, all left and right cosets of H are equal.
- We often say, "H is normal in G."

Example. $K = \{\varepsilon, r_{90}, r_{180}, r_{270}\}$ is a normal subgroup of D_4 , because aK = Ka for all $a \in D_4$.

Question: Why should we care about normal subgroups?

Theorem. If H is normal in G, then $aH \cdot bH = (ab)H$.

- We must show $aH \cdot bH \subseteq (ab)H$ and $(ab)H \subseteq aH \cdot bH$.
- But $(ab)H \subseteq aH \cdot bH$ is always true. (Proved in Day 21.)

Proof of $aH \cdot bH \subseteq (ab)H$: Assume H is normal in G.

Let $x \in aH \cdot bH$ so that $x = ah \cdot bk$ for some $h, k \in H$.

Since H is a normal subgroup, we have Hb = bH.

Hence, hb = bj for some $j \in H$.

Therefore, $x = ah \cdot bk = a(hb)k = a(bj)k = (ab)(jK) \in (ab)H$.

Thus, $x \in (ab)H$ so that $aH \cdot bH \subseteq (ab)H$.

Important:

Read about the

"Normal subgroup test"

in Chapter 24.