Let G be a (multiplicative) group and H a subgroup.

Coset multiplication shortcut: For aH, $bH \in G/H$, $aH \cdot bH = (ab)H$.

IF the shortcut holds in G/H, then...

G/H is a quotient group under coset multiplication.

$$???$$
 \longrightarrow

We know: $\left[\begin{array}{c} ??? \\ \end{array}\right] \Longrightarrow \left[\begin{array}{c} \text{CM shortcut} \\ \text{holds in } G/H \end{array}\right] \Longrightarrow$

$$\implies \left(\begin{array}{c} G/H : \\ \text{a grou} \end{array} \right)$$

- We'll explore ??? next time.
- For today, assume that the shortcut holds.

Let G be a group and H a subgroup. Suppose that G/Hsatisfies the coset multiplication shortcut.

Discuss in your group: Explain why Last time:
$$(aH)^{-1} = a^{-1}H$$
.

Last time:
$$(aH)^{-1} = a^{-1}H$$
.

$$(aH)^3 = a^3H$$
 and $(aH)^{-3} = a^{-3}H$ for all $aH \in G/H$.

$$\bullet (aH)^3 = aH \cdot aH \cdot aH = a^3H.$$

$$\bullet \ (aH)^{-3} = ((aH)^{-1})^3 = (aH)^{-1} \cdot (aH)^{-1} \cdot (aH)^{-1}$$

$$= a^{-1}H \cdot a^{-1}H \cdot a^{-1}H = (a^{-1})^3H = a^{-3}H.$$

Conclusion:
$$(aH)^k = a^k H$$
 for all $k \in \mathbb{Z}$.

Theorem: Suppose [G:H]=n. Then $g^n \in H$ for all $g \in G$.

Proof: Let $g \in G$. We must show that $g^n \in H$.

We know that n = [G : H] = size of G/H.

Consider $gH \in G/H$, and let $d = \operatorname{ord}(gH)$ in G/H.

Then $d \mid n$ so that $n = d \cdot k$ for some integer k.

Thus, $(gH)^n = (gH)^{dk} = ((gH)^d)^k = (\varepsilon H)^k = \varepsilon H$, so that $(gH)^n = \varepsilon H$.

Also, $(gH)^n = g^nH$, and $sog^nH = \varepsilon H = H$.

Therefore, $g^n \in H$.

Scrap: Let 9E G.

* Work with

9H E 6/H

k n = [G:H]= Size of G/H

 $\Rightarrow (gH)^n = \varepsilon H$

 \Rightarrow $g^n H = H$

 \Rightarrow $g^n \in H$.