Last time: Consider the subgroup $H = \{1, 3, 9\}$ of U_{13} .

- The set of distinct cosets of H is: $U_{13}/H = \{1H, 2H, 4H, 7H\}.$
- The set U_{13}/H is a quotient group under coset multiplication. For example...

$$2H \cdot 7H = \{2, 5, 6\} \cdot \{7, 8, 11\}$$

$$= \{2 \cdot 7, 2 \cdot 8, 2 \cdot 11, 5 \cdot 7, 5 \cdot 8, 5 \cdot 11, 6 \cdot 7, 6 \cdot 8, 6 \cdot 11\}$$

$$= \{1, 3, 9, 9, 1, 3, 3, 9, 1\}$$

$$= 1H$$

Group table for U_{13}/H

	1H	2H	4H	7H
1H		2H	4H	7 <i>H</i>
2H	2H	4H	7H	(1 <i>H</i>)
4H	4H	7H	1H	2H
7H	7H	1H	2H	4H

Group properties:

- Closure.
- Associativity. (Chapter 21 reading.)
- 1H is the identity element of U_{13}/H .
- Inverses:
 - $7H = (2H)^{-1}$ and $2H = (7H)^{-1}$.
 - Also, 1H and 4H are self inverses.

Coset multiplication shortcut: For aH, $bH \in U_{13}/H$,

$$aH \cdot bH = (ab)H.$$

For example, we *should* have $2H \cdot 7H = 14H$, and we've seen indeed that $2H \cdot 7H = 1H$. (Note that 14H = 1H.)

What we know so far:

- We proved: G is commutative \Longrightarrow Shortcut holds in G/H
- But we saw that the shortcut also holds in D_4/Z , where $Z = \{\varepsilon, r_{180}\}$, even though D_4 is non-commutative.

Consider the subgroup $H = \langle 10 \rangle$ of the multiplicative group U_{37} .

Problem #4: Find the inverse of 15H in U_{37}/H .

• In
$$U_{37}$$
: $15 \cdot 5 = 1 \implies 15^{-1} = 5$.

• In
$$U_{37}/H$$
: $15H \cdot 5H = (15 \cdot 5)H = 1H \implies (15H)^{-1} = 5H = 15^{-1}H$

Conclusion: $(15H)^{-1} = 15^{-1}H$.

Generalize:
$$(aH)^{-1} = a^{-1}H.$$

Verify: U_{37}/H is a quotient group

Since U_{37}/H satisfies the coset multiplication shortcut...

1. U_{37}/H is closed under coset multiplication, i.e.,

$$aH \cdot bH = (ab)H \in U_{37}/H$$
 for all aH , $bH \in U_{37}/H$.

- 2. Coset multiplication is associative. (See Chapter 21.)
- 3. U_{37}/H contains an identity element 1H such that

$$1H \cdot aH = (1 \cdot a)H = aH$$
 for all $aH \in U_{37}/H$. (Also, $aH \cdot 1H = aH$.)

4. Each $aH \in U_{37}/H$ has an inverse $a^{-1}H \in U_{37}/H$ where

$$aH \cdot a^{-1}H = (a \cdot a^{-1})H = 1H.$$
 (Also, $a^{-1}H \cdot aH = 1H.$)

What we know so far (again)

• So we just proved:

Shortcut holds in
$$G/H$$
 \Longrightarrow G/H is a quotient group

• Question: When does the shortcut hold?

(When G is commutative, yes. But there's more to the story... Stay tuned!)