Discuss in your group: Consider the subgroup $H = \{1, 3, 9\}$ of U_{13} . - (a) Quick! How many distinct cosets of H are there? - (b) Find all distinct cosets of H. (Example: 2H.) $$\bullet$$ 1H = {1, 3, 9} = 3H = 9H $$\bullet$$ **2** H = {2, **6**, 5} = **6** H = 5 H $$\bullet$$ 4H = {4, 12, 10} = 12H = 10H $$\bullet$$ **7** H = {7, 8, 11} = 8 H = 11 H #### Remarks: - $a \in aH$. - The cosets form a partition of U_{13} . ### Set of cosets Consider again the subgroup $H = \{1, 3, 9\}$ of U_{13} . **Notation.** We define U_{13}/H (read " $U_{13} \mod H$ ") to be the set of distinct cosets of H. Thus, $$U_{13}/H = \{1H, 2H, 4H, 7H\}.$$ ### Crazy idea. - We want to turn U_{13}/H into a group. - We need an operation, i.e., a way to "multiply" cosets. **Definition.** Let S and T be subsets of a group G. Then the product of S and T is the set $$S \cdot T = \{ s \cdot t \mid s \in S, t \in T \},\$$ where the multiplication $s \cdot t$ is done in G. **Example.** To multiply the cosets 2H and 4H... $$2H \cdot 4H = \{2, 6, 5\} \cdot \{4, 12, 10\}$$ $$= \{2 \cdot 4, 2 \cdot 12, 2 \cdot 10, 6 \cdot 4, 6 \cdot 12, 6 \cdot 10, 5 \cdot 4, 5 \cdot 12, 5 \cdot 10\}$$ $$= \{8, 11, 7, 11, 7, 8, 7, 8, 11\}$$ $$= 7H$$ ## The group U_{13}/H | | 1H | 2H | 4H | 7H | |----|-----------|----|----|----| | 1H | 1H | 2H | 4H | 7H | | 2H | 2H | 4H | 7H | 1H | | 4H | 4H | 7H | 1H | 2H | | 7H | <i>7H</i> | 1H | 2H | 4H | #### Key: Treat each coset aH as an element of U_{13}/H . ### Group properties: - 1. U_{13}/H is closed under coset multiplication. - 2. Coset multiplication is associative. (See Chapter 21 reading.) - 3. U_{13}/H contains the identity, namely 1H. - 4. Every element in U_{13}/H has an inverse. ### The group U_{13}/H | | 1H | 2H | 4H | 7H | |------------|------------|----|----|----| | 1H | 1H | 2H | 4H | 7H | | 2H | 2H | 4H | 7H | 1H | | 4H | 4H | 7H | 1H | 2H | | 7 <i>H</i> | 7 <i>H</i> | 1H | 2H | 4H | #### Key: Treat each coset aH as an element of U_{13}/H . Using this table, we find $$(2H)^2 \cdot (2H) \qquad (2H)^3 \cdot (2H)$$ $$(2H)^1 = 2H$$, $(2H)^2 = 4H$, $(2H)^3 = 7H$, $(2H)^4 = 1H \implies \operatorname{ord}(2H) = 4$. Thus, U_{13}/H is cyclic with generator 2H, i.e., $U_{13}/H = \langle 2H \rangle$. ### Coset multiplication shortcut **Problem #2:** Elizabeth claims she can compute $4H \cdot 7H$ without multiplying each element of 4H by those of 7H. How? Can you *justify* her claim? Key: $$4H \cdot 7H = (4 \cdot 7)H = 2H$$. $$aH \cdot bH = (a \cdot b)H \quad \longleftarrow \text{ True in a } \underline{commutative } \text{ group.}$$ **Question:** When does the coset multiplication shortcut work? **Theorem:** Let G be a commutative group, H a subgroup, and $a, b \in G$. Define $aH \cdot bH = \{\alpha \cdot \beta \mid \alpha \in aH, \beta \in bH\}$. Then $aH \cdot bH = (ab)H$. **Proof:** We must show that $aH \cdot bH \subseteq (ab)H$ and $(ab)H \subseteq aH \cdot bH$. Let $\alpha \cdot \beta \in aH \cdot bH$, where $\alpha \in aH$ and $\beta \in bH$. True for any group G. Thus, $\alpha = ah$ and $\beta = bk$ for some $h, k \in H$. Since G is commutative, we have $$\alpha \cdot \beta = (ah)(bK) = (ab)(hK) \in (ab)H$$. Therefore, $\alpha \cdot \beta \in (ab)H$, so that $aH \cdot bH \subseteq (ab)H$. Next, let $\gamma \in (ab)H$ so that $\gamma = (ab)h$ for some $h \in H$. Then, $$Y = (ab)h = (ae)(bh) \in aH \cdot bH$$. Thus, $\gamma \in aH \cdot bH$, so that $(ab)H \subseteq aH \cdot bH$. Therefore, $aH \cdot bH = (ab)H$ as desired.