Discuss in your group: Consider the subgroup $H = \{1, 3, 9\}$ of U_{13} .

- (a) Quick! How many distinct cosets of H are there?
- (b) Find all distinct cosets of H. (Example: 2H.)

$$\bullet$$
 1H = {1, 3, 9} = 3H = 9H

$$\bullet$$
 2 H = {2, **6**, 5} = **6** H = 5 H

$$\bullet$$
 4H = {4, 12, 10} = 12H = 10H

$$\bullet$$
 7 H = {7, 8, 11} = 8 H = 11 H

Remarks:

- $a \in aH$.
- The cosets form a partition of U_{13} .

Set of cosets

Consider again the subgroup $H = \{1, 3, 9\}$ of U_{13} .

Notation. We define U_{13}/H (read " $U_{13} \mod H$ ") to be the set of distinct cosets of H. Thus,

$$U_{13}/H = \{1H, 2H, 4H, 7H\}.$$

Crazy idea.

- We want to turn U_{13}/H into a group.
- We need an operation, i.e., a way to "multiply" cosets.

Definition. Let S and T be subsets of a group G.

Then the product of S and T is the set

$$S \cdot T = \{ s \cdot t \mid s \in S, t \in T \},\$$

where the multiplication $s \cdot t$ is done in G.

Example. To multiply the cosets 2H and 4H...

$$2H \cdot 4H = \{2, 6, 5\} \cdot \{4, 12, 10\}$$

$$= \{2 \cdot 4, 2 \cdot 12, 2 \cdot 10, 6 \cdot 4, 6 \cdot 12, 6 \cdot 10, 5 \cdot 4, 5 \cdot 12, 5 \cdot 10\}$$

$$= \{8, 11, 7, 11, 7, 8, 7, 8, 11\}$$

$$= 7H$$

The group U_{13}/H

	1H	2H	4H	7H
1H	1H	2H	4H	7H
2H	2H	4H	7H	1H
4H	4H	7H	1H	2H
7H	<i>7H</i>	1H	2H	4H

Key:

Treat each coset aH as an element of U_{13}/H .

Group properties:

- 1. U_{13}/H is closed under coset multiplication.
- 2. Coset multiplication is associative. (See Chapter 21 reading.)
- 3. U_{13}/H contains the identity, namely 1H.
- 4. Every element in U_{13}/H has an inverse.

The group U_{13}/H

	1H	2H	4H	7H
1H	1H	2H	4H	7H
2H	2H	4H	7H	1H
4H	4H	7H	1H	2H
7 <i>H</i>	7 <i>H</i>	1H	2H	4H

Key:

Treat each coset aH as an element of U_{13}/H .

Using this table, we find
$$(2H)^2 \cdot (2H) \qquad (2H)^3 \cdot (2H)$$

$$(2H)^1 = 2H$$
, $(2H)^2 = 4H$, $(2H)^3 = 7H$, $(2H)^4 = 1H \implies \operatorname{ord}(2H) = 4$.

Thus, U_{13}/H is cyclic with generator 2H, i.e., $U_{13}/H = \langle 2H \rangle$.

Coset multiplication shortcut

Problem #2: Elizabeth claims she can compute $4H \cdot 7H$ without multiplying each element of 4H by those of 7H.

How? Can you *justify* her claim?

Key:
$$4H \cdot 7H = (4 \cdot 7)H = 2H$$
.
$$aH \cdot bH = (a \cdot b)H \quad \longleftarrow \text{ True in a } \underline{commutative } \text{ group.}$$

Question: When does the coset multiplication shortcut work?

Theorem: Let G be a commutative group, H a subgroup, and $a, b \in G$.

Define $aH \cdot bH = \{\alpha \cdot \beta \mid \alpha \in aH, \beta \in bH\}$. Then $aH \cdot bH = (ab)H$.

Proof: We must show that $aH \cdot bH \subseteq (ab)H$ and $(ab)H \subseteq aH \cdot bH$.

Let $\alpha \cdot \beta \in aH \cdot bH$, where $\alpha \in aH$ and $\beta \in bH$.

True for any group G.

Thus, $\alpha = ah$ and $\beta = bk$ for some $h, k \in H$.

Since G is commutative, we have

$$\alpha \cdot \beta = (ah)(bK) = (ab)(hK) \in (ab)H$$
.

Therefore, $\alpha \cdot \beta \in (ab)H$, so that $aH \cdot bH \subseteq (ab)H$.

Next, let $\gamma \in (ab)H$ so that $\gamma = (ab)h$ for some $h \in H$.

Then,
$$Y = (ab)h = (ae)(bh) \in aH \cdot bH$$
.

Thus, $\gamma \in aH \cdot bH$, so that $(ab)H \subseteq aH \cdot bH$.

Therefore, $aH \cdot bH = (ab)H$ as desired.