Discuss in your group:

Consider the additive group \mathbb{Z}_{12} and its subgroup $H = \{0, 4, 8\}$. How many distinct cosets of H do you expect? Find all of them.

Example:

$$6 + H = \{6, 10, 2\}$$

•
$$0 + H = 4 + H = 8 + H = \{0, 4, 8\}$$
 (original subgroup)

•
$$1 + H = 5 + H = 9 + H = \{1, 5, 9\}$$

•
$$2 + H = 6 + H = 10 + H = \{2, 6, 10\}$$

$$\bullet$$
 3 + H = 7 + H = 11 + H = {3, 7, 11}

Notation. [G:H] denotes the number of distinct (left) cosets of H in G.

- In the above example, [G:H]=4.
- [G:H] is called the *index* of H in G.

When two cosets are equal:

$$a + H = b + H \iff a - b \in H \text{ and } b - a \in H \text{ (additive groups)}$$

$$aH = bH \iff b^{-1}a \in H \text{ and } a^{-1}b \in H \text{ (multiplicative groups)}$$

$$(\text{Not } ab^{-1}, ba^{-1} \in H.)$$

$$\mathbf{Mnemonic.} \ aH = bH \iff b^{-1}aH = H \iff b^{-1}a \in H.$$

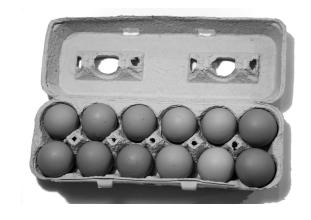
Mnemonic.
$$aH = bH \iff b^{-1}aH = H \iff b^{-1}a \in H$$

(This is *not* a proof!)

Problem #1, part (b):

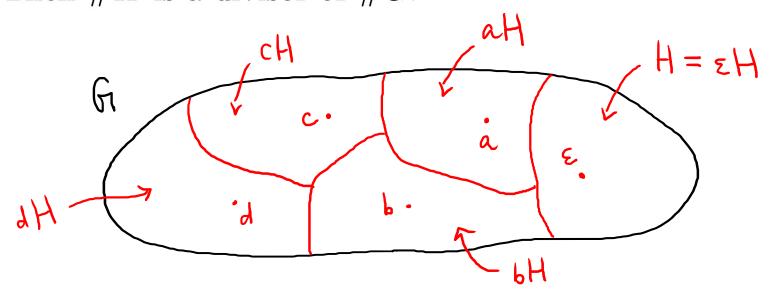
With #H = 12, the group G cannot contain 1000 elements,

because 12 is not a divisor of 1000.



Lagrange's Theorem: Let H be a subgroup of a finite group G. Then #H is a divisor of #G.

Lagrange's Theorem: Let H be a subgroup of a finite group G. Then #H is a divisor of #G.



Here [G:H] = 5, as 5 cosets of H are needed to fill up G.

Proof ingredients:

- 1. All the cosets of H have the same size, namely #H.
- \checkmark 2. The distinct cosets of H form a partition of G, i.e.,
 - (a) they cover all of G, and
 - (b) they do not overlap with each other.

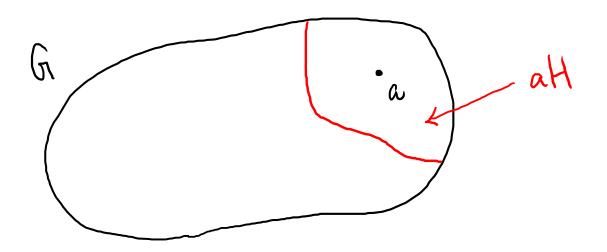
Key: These two ingredients prove Lagrange's Theorem.

Theorem. The distinct cosets of H form a partition of G, i.e.,

(a) They cover all of G.

We'll show that every element of G is contained in some coset.

Let $a \in G$. Then $a \in aH$, i.e., a is contained in the coset aH.



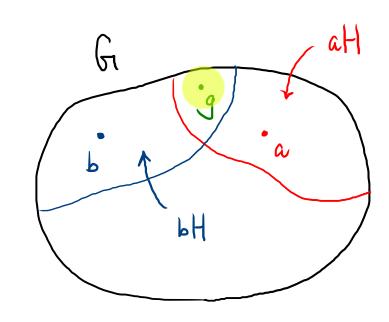
Theorem. The distinct cosets of H form a partition of G, i.e.,

(b) They do not overlap with each other.

We must show: if $aH \neq bH$, then aH and bH do not overlap.

We will show: if aH and bH do overlap, then aH = bH. (Contrapositive!)

- Assume that the cosets aH and bH overlap.
- Let g be an element in both aH and bH.
- Thus, g = ah and g = bk for some $h, k \in H$.
- Then, ah = bk which implies $b^{-1}a = kh^{-1} \in H$.
- Since $b^{-1}a \in H$, we obtain aH = bH.



An old conjecture proved

Question: Let $g \in G$ be a group element.

If $\operatorname{ord}(g) = 12$, can G contain 1000 elements? Why or why not?

Conjecture: Let G be a finite group and $g \in G$.

Then ord(g) is a divisor of the number of elements in G.

Proof steps.

- Let $n = \operatorname{ord}(g)$.
- Since $\langle g \rangle = \{ \varepsilon, g^1, g^2, g^3, \dots, g^{n-1} \}$, we have $\# \langle g \rangle = n$.
- Lagrange: $\langle g \rangle$ is a subgroup of $G \implies \#\langle g \rangle \mid \#G$.
- Thus, n is a divisor of #G.