Discuss in your group:

Let g be a group element with $\operatorname{ord}(g) = 6$. Consider the cyclic group $\langle g \rangle = \{g^k \mid k \in \mathbb{Z}\}$. Elizabeth says,

"The operations of \mathbb{Z}_6 and $\langle g \rangle$ match up."

What might she mean?

$$+ * \Theta(3) = 9^3$$

Key property: Consider $\theta: \mathbb{Z}_6 \to \langle g \rangle$ where $\theta(a) = g^a$ for all $a \in \mathbb{Z}_6$.

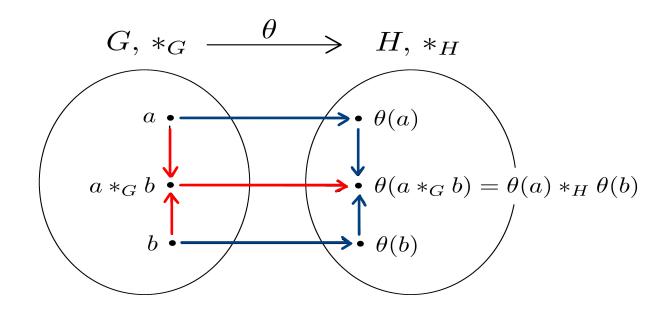
$$\theta$$
 is operation preserving, i.e., $\theta(a+b) = \theta(a) * \theta(b)$ for all $a, b \in \mathbb{Z}_6$.
$$q^{a+b} = q^a * q^b$$

(i.e., addition in \mathbb{Z}_6 feels like multiplication in $\langle g \rangle$.)

Definition. Let G and H be groups w/ operations $*_G$ and $*_H$.

A function $\theta: G \to H$ is a isomorphism homomorphism if

- θ is a bijection (i.e., one-to-one and onto), and
- θ is operation preserving, i.e., $\theta(a *_G b) = \theta(a) *_H \theta(b)$ for all $a, b \in G$.



Note: An isomorphism is a special type of a homomorphism.

Important example: $\varphi(43) = 3$

$$\varphi(43) = 3$$

Define $\varphi: \mathbb{Z} \to \mathbb{Z}_5$ where $\varphi(a) = a \pmod{5}$ for all $a \in \mathbb{Z}$.

- $\varphi(26 + 17) = \varphi(43) = 43 \pmod{5} = 3 \pmod{5}$.
- $\varphi(26) + \varphi(17) = 26 \pmod{5} + 17 \pmod{5} = 1 \pmod{5} + 2 \pmod{5} = 3 \pmod{5}$.

$$\Rightarrow \varphi(26 + 17) = \varphi(26) + \varphi(17)$$
add, then reduce each,
reduce. then add.

 $\Longrightarrow \varphi$ is a homomorphism.

Key: Homomorphisms provide a *unifying language* to describe familiar algebraic properties.

$$g^{a+b} = g^a * g^b \qquad \Longrightarrow \qquad \theta(a+b) = \theta(a) * \theta(b)$$

$$a+b \pmod{5} = a \pmod{5} + b \pmod{5} \qquad \Longrightarrow \qquad \varphi(a+b) = \varphi(a) + \varphi(b)$$

$$6(a+b) = 6a + 6b \qquad \Longrightarrow \qquad \gamma(a+b) = \gamma(a) + \gamma(b)$$

$$(ab)^3 = a^3b^3 \qquad \Longrightarrow \qquad \lambda(a*b) = \lambda(a) * \lambda(b)$$

$$\det(\alpha\beta) = \det \alpha \cdot \det \beta \qquad \Longrightarrow \qquad \delta(\alpha*\beta) = \delta(\alpha) * \delta(\beta)$$

Theorem. Let $\theta: G \to H$ be a group homomorphism.

Then θ maps the identity of G to the identity of H, i.e., $\theta(\varepsilon_G) = \varepsilon_H$.

(See Chapter 17 reading for the proof.)

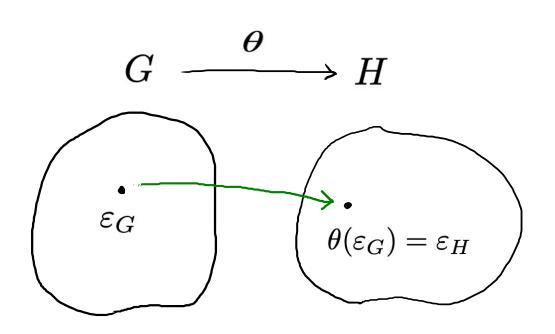
Problem #5: We have...

•
$$\varphi: \mathbb{Z} \to \mathbb{Z}_5$$
 with $\varphi(0) = 0 \pmod{5}$.

•
$$\gamma: \mathbb{Z}_{12} \to \mathbb{Z}_{18}$$
 with $\gamma(0) = 0$.

•
$$\lambda: U_{13} \to U_{13}$$
 with $\lambda(1) = 1$.

•
$$\delta: G(\mathbb{Z}_{10}) \to U_{10}$$
 with $\delta(\varepsilon) = 1$.



Problem #7: We have $\alpha = \begin{bmatrix} 2 & 1 \\ 5 & 4 \end{bmatrix}$ and $\alpha^{-1} = \begin{bmatrix} 8 & 3 \\ 5 & 4 \end{bmatrix}$.

In
$$G(\mathbb{Z}_{10})$$
 In U_{10}

$$\alpha \cdot \alpha^{-1} = \varepsilon \implies \delta(\alpha \cdot \alpha^{-1}) = \delta(\varepsilon)$$

$$\implies \delta(\alpha) \cdot \delta(\alpha^{-1}) = 1$$

$$\implies \delta(\alpha^{-1})$$
 is the inverse of $\delta(\alpha)$

$$\Longrightarrow \delta(\alpha^{-1}) = \delta(\alpha)^{-1}$$
 "inverse of"

Theorem: Let $\theta: G \to H$ be a group homomorphism.

Then
$$\theta(g^{-1}) = \theta(g)^{-1}$$
 for all $g \in G$.

Proof: Let $g \in G$. Then $g *_G g^{-1} = \varepsilon_G$.

Applying θ to both sides, $\theta(g *_G g^{-1}) = \theta(\varepsilon_G)$.

Since θ is operation preserving, $\theta(g *_G g^{-1}) = \theta(g) *_H \theta(g^{-1})$.

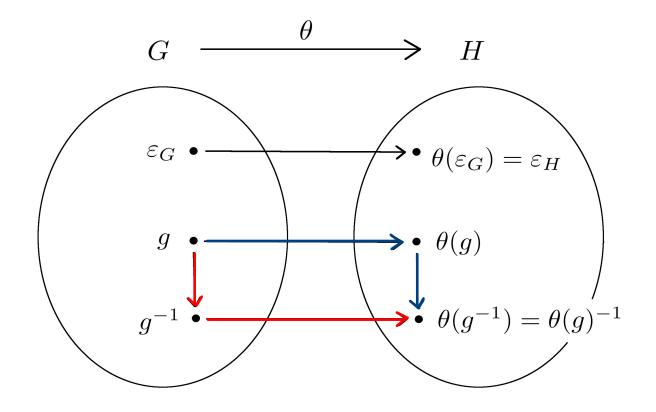
Since θ preserves the identity, $\theta(\varepsilon_G) = \varepsilon_H$.

Thus, we have $\theta(g) *_H \theta(g^{-1}) = \varepsilon_H$.

Hence, $\theta(g^{-1})$ is the inverse of $\theta(g)$ in H.

In other words, $\theta(g^{-1}) = \theta(g)^{-1}$ "inverse of"

Summary: Let $\theta: G \to H$ be a group homomorphism.



Note that $\theta(g^{-1}) = \theta(g)^{-1}$ means it doesn't matter whether we...

- first invert in G, then apply θ or
- first apply θ , then invert in H.