Let g be a group element with ord(g) = 6. Consider the cyclic group

$$\langle g \rangle = \{ g^k \mid k \in \mathbb{Z} \}$$

$$= \{ \dots, g^{-4}, g^{-3}, g^{-2}, g^{-1}, g^0, g^1, g^2, g^3, g^4, \dots \}$$

Discuss in your group:

- (a) Find the smallest positive integer k such that $g^{45} = g^k$. (k = 3)
- (b) Same as above, but with: $g^{-2} = g^k$. (k = 4)

(c) Find the distinct elements of $\langle g \rangle$. $\{g^0, g^1, g^2, g^3, g^4, g^5\}$

With $\operatorname{ord}(g) = 6$, consider the cyclic group $\langle g \rangle = \{g^k \mid k \in \mathbb{Z}\}.$

For the groups \mathbb{Z}_6 and $\langle g \rangle$, we've seen that:

1. The elements in \mathbb{Z}_6 and $\langle g \rangle$ "match up."

$$\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\} \text{ and } \langle g \rangle = \{g^0, g^1, g^2, g^3, g^4, g^5\}.$$

2. The operations of \mathbb{Z}_6 and $\langle g \rangle$ also "match up."

In
$$\mathbb{Z}_6$$
: $3+5=2$ In $\langle g \rangle$: $g^3 \cdot g^5=g^2$

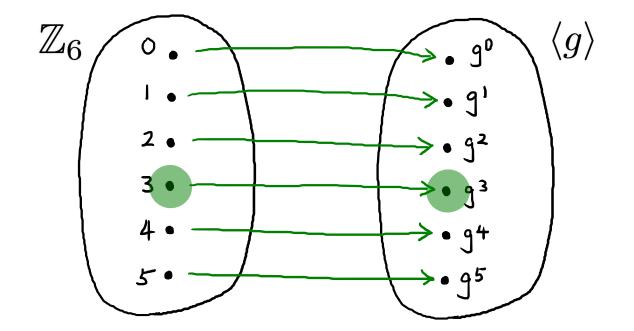
Conclusion: The groups \mathbb{Z}_6 and $\langle g \rangle$ are <u>isomorphic</u>. (In other words, they're essentially the same group.)

Consider the function $\theta: \mathbb{Z}_6 \to \langle g \rangle$ where $\theta(a) = g^a$ for all $a \in \mathbb{Z}_6$.

Note: We still have $\operatorname{ord}(g) = 6$.

$$\Theta(3) = d_3$$

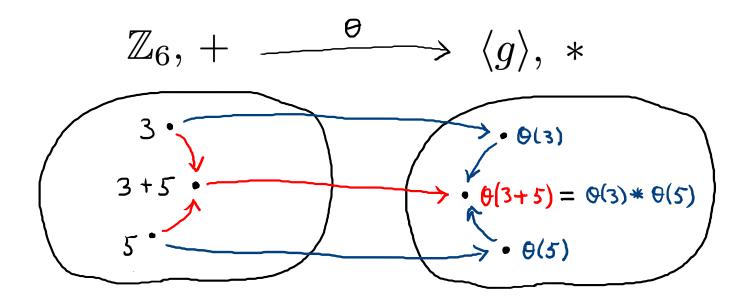
- 1. The elements in \mathbb{Z}_6 and $\langle g \rangle$ "match up."
- 1. θ is a bijection (i.e., one-to-one and onto).



Note: θ specifies how

these elements "match up."

2. The operations of \mathbb{Z}_6 and $\langle g \rangle$ also "match up."



Given $3, 5 \in \mathbb{Z}_6$, we can...

- Add them first in \mathbb{Z}_6 , then apply θ to the sum: $\theta(3+5)$ or g^{3+5}
- Apply θ to each, then multiply in $\langle g \rangle$: $\theta(3) * \theta(5)$ or $g^3 * g^5$

Since
$$g^{3+5} = g^3 * g^5$$
, we have: $\theta(3+5) = \theta(3) * \theta(5)$

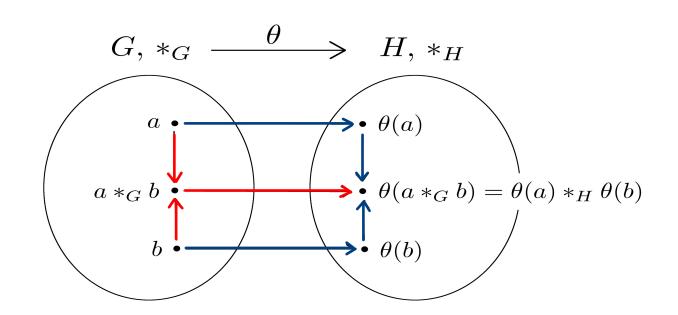
Definition. Let G and H be groups w/ operations $*_G$ and $*_H$.

A function $\theta: G \to H$ is an isomorphism if...

- 1. θ is a bijection (i.e., one-to-one and onto), and
- 2. θ is operation preserving, i.e.,

$$\theta(a *_G b) = \theta(a) *_H \theta(b)$$

for all $a, b \in G$.



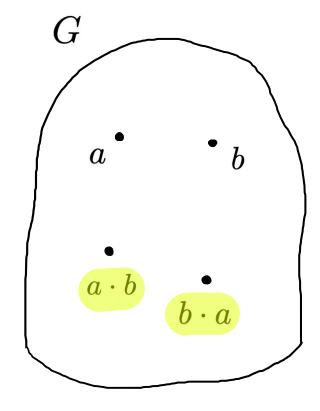
And we say that G is isomorphic to H and write $G \cong H$.

Key: $G \cong H$ means they're essentially the same group.

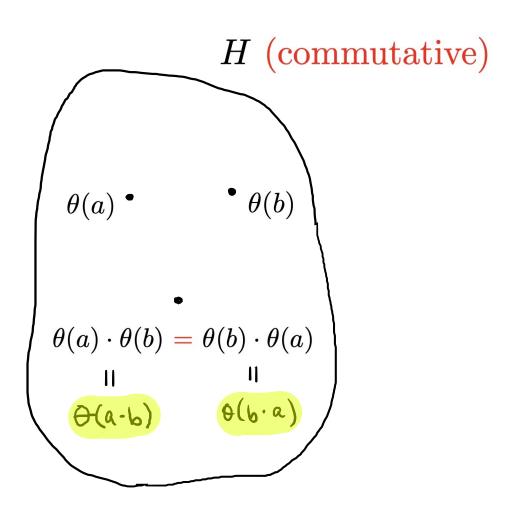
Theorem. Let $\theta: G \to H$ be a group isomorphism.

If H is commutative, then G is commutative.

Picture:



Goal: $a \cdot b = b \cdot a$



Theorem. Let $\theta: G \to H$ be a group isomorphism.

If H is commutative, then G is commutative.

Proof: Assume H is commutative. We must show that G is commutative.

Let
$$a, b \in G$$
.

We have
$$\Theta(a *_{G} b) = \Theta(a) *_{H} \Theta(b)$$
, since Θ is operation preserving.

Therefore
$$O(a*_{G}b) = O(b*_{G}a)$$
.