Consider the function $\gamma: \mathbb{Z}_{12} \to \mathbb{Z}_{18}$ where $\gamma(a) = 6a$ for all $a \in \mathbb{Z}_{12}$.

Example:

$$\gamma(5) = 6 \cdot 5$$

$$= 30 = 12$$

$$\text{in } \mathbb{Z}_{18}$$

- The domain of the function is \mathbb{Z}_{12} . This is the set of all possible inputs into the function.
- The *codomain* of the function is \mathbb{Z}_{18} . This set contains all outputs (and possibly other elements).
- The *rule* of the function is $\gamma(a) = 6a$, where $a \in \mathbb{Z}_{12}$ (domain) and $\gamma(a) \in \mathbb{Z}_{18}$ (codomain).

One-to-one (example)

Consider $f: U_{35} \to U_{35}$ where f(x) = 3x for all $x \in U_{35}$.

Claim. If $a \neq b$, then $f(a) \neq f(b)$.

Proof. We'll prove the contrapositive:

If
$$f(a) = f(b)$$
, then $a = b$.

Noting that $3^{-1} = 12$, we multiply both sides by 12.

Hence,
$$12(3a) = 12(3b) \implies (12 \cdot 3)a = (12 \cdot 3)b \implies 1 \cdot a = 1 \cdot b$$
.

Thus, a = b.

One-to-one (general)

Let $f: S \to T$ be a function from domain S to codomain T.

Definition. f is said to be **one-to-one** when it satisfies:

$$a \neq b \implies f(a) \neq f(b)$$
 for all $a, b \in S$.

Key:

Different inputs map to different outputs.

Proof know-how: To show that f is one-to-one...

- Assume f(a) = f(b), where $a, b \in S$.
- Show that a = b.

i.e., prove the contrapositive.

Onto (example): Consider $f: U_{35} \to U_{35}$ where f(x) = 3x for all $x \in U_{35}$.

Claim: If $y \in U_{35}$, then there exists $x \in U_{35}$ such that f(x) = y.

Key: $y \in U_{35}$ in the codomain is chosen first.

Proof: Assume $y \in U_{35}$. We must find $x \in U_{35}$ such that f(x) = y.

Noting that $3^{-1} = 12$, let x = 12y.

We know that $x \in U_{35}$, because 12, $y \in U_{35}$ and U_{35} is closed.

Then,
$$f(x) = 3(12y) = (3 \cdot 12)y = y$$
, as desired.

Onto (general): Consider $f: S \to T$ with domain S and codomain T.

Definition. f is **onto** if for every $t \in T$, there exists $s \in S$ such that f(s) = t.

Key: Every element of the codomain gets "hit" by f.

Proof know-how: To show that f is onto...

• Let $t \in T$. (Example: Let $y \in U_{35}$.)

$$(x = 12y \in U_{35}.)$$

- Find $s \in S$ such that f(s) = t. This s is usually expressed in terms of t.
- (If necessary) Verify that s is actually in set S.
- Show that s satisfies the desired property, namely f(s) = t.