\mathbb{Z}_{10} revisited: Consider $\mathbb{Z}_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ again.

Recall that \mathbb{Z}_{10} is a group under addition.

Newsflash: We can add and multiply in \mathbb{Z}_{10} .

Discuss in your group: Is \mathbb{Z}_{10} a group under multiplication?

Group properties:

- ✓ 1. Closure: If $a, b \in \mathbb{Z}_{10}$, then $a \cdot b \in \mathbb{Z}_{10}$.
- \checkmark 2. Associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
- ✓ 3. (Multiplicative) Identity: $1 \in \mathbb{Z}_{10}$.
- $\frac{11}{2}$ 4. (Multiplicative) Inverses: $0 \cdot \chi = 1$ Not possible.

Dilemma: \mathbb{Z}_{10} is *not* a group under multiplication, because not every element has a multiplicative inverse.

Example:

- $4 \cdot x = 1$ is not possible in \mathbb{Z}_{10} , so 4^{-1} does not exist.
- (But 4 + x = 0 is possible in \mathbb{Z}_{10} , so -4 = 6 does exist.)

Question: How did we salvage the situation?

Answer: Define this subset...

$$U_{10} = \{a \in \mathbb{Z}_{10} \mid a \text{ has a multiplicative inverse}\}$$

= $\{1, 3, 7, 9\}$

Matrix group: Let $M(\mathbb{Z}_{10})$ be the set of 2×2 matrices with entries in \mathbb{Z}_{10} .

Recall that $M(\mathbb{Z}_{10})$ is a group under addition.

Newsflash: We can add and multiply in $M(\mathbb{Z}_{10})$.

Question: Is $M(\mathbb{Z}_{10})$ a group under multiplication?

Group properties:

- ✓ 1. Closure: If α , $\beta \in M(\mathbb{Z}_{10})$, then $\alpha \cdot \beta \in M(\mathbb{Z}_{10})$.
- ✓ 2. Associativity: $(\alpha \cdot \beta) \cdot \gamma = \alpha \cdot (\beta \cdot \gamma)$.
- ✓3. (Multiplicative) Identity: $\varepsilon = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in M(\mathbb{Z}_{10})$.
- 4. (Multiplicative) Inverses:

This isn't possible:

$$\begin{bmatrix} 2 & 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \hline 0 & 1 \end{bmatrix}.$$

So, $\begin{bmatrix} 2 & 3 \\ 0 & 0 \end{bmatrix}^{-1}$ does *not* exist.

Definition: $G(\mathbb{Z}_{10}) = \{ \alpha \in M(\mathbb{Z}_{10}) \mid \alpha \text{ has a multiplicative inverse} \}.$

Theorem: $G(\mathbb{Z}_{10})$ is a multiplicative group.

- ✓1. $G(\mathbb{Z}_{10})$ is closed under multiplication. (Proof is similar to U_m .)
- ✓2. Matrix multiplication is associative.
- ✓3. $\varepsilon = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is in $G(\mathbb{Z}_{10})$, because $\varepsilon \cdot \varepsilon = \varepsilon$ (i.e., ε is a self inverse).
- \checkmark 4. $\alpha \in G(\mathbb{Z}_{10}) \Longrightarrow \alpha^{-1}$ exists such that $\alpha \cdot \alpha^{-1} = \varepsilon$.
 - $\implies \alpha^{-1}$ has a multiplicative inverse, namely α .
 - $\implies \alpha^{-1} \in G(\mathbb{Z}_{10}).$

Similarity between U_{10} and $G(\mathbb{Z}_{10})$

Both multiplicative groups U_{10} and $G(\mathbb{Z}_{10})$ have a "trick" that allows us to easily determine whether or not an element is in the group.

Examples:

- $8 \in U_{35}$, because gcd(8, 35) = 1.
- $10 \notin U_{35}$, since $gcd(10, 35) \neq 1$.
- $\alpha = \begin{bmatrix} 2 & 1 \\ 5 & 4 \end{bmatrix} \in G(\mathbb{Z}_{10})$, as $\det \alpha = 3 \in U_{10}$.
- $\beta = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \not\in G(\mathbb{Z}_{10})$, since $\det \beta = 5 \not\in U_{10}$.