Warm-up problem

Claim: If n is an odd integer, then n^2 is odd.

Discuss in your group:

(a) Create a few concrete examples to convince yourselves that the claim is true.

Example: n = 7 is odd $\implies n^2 = 49$, which is also odd.

Remark: Concrete examples are *really* important.

(b) Write a clear, precise, convincing, and [insert superlative] argument explaining **why** the claim is true.

Odd and Even

Examples:

- 7 is odd, because $7 = 2 \cdot 3 + 1$
- 213 is odd, because 213 = 2· (ob + 1)
- -1081 is odd, because $-1081 = 2 \cdot (-541) + 1$

Definitions:

- An integer n is odd when $n = 2 \cdot k + 1$ for some integer k.
- An integer n is even when $n = 2 \cdot k$ for some integer k.

Implication (i.e., an "if ..., then ..." statement)

Claim: If n is an odd integer, then n^2 is odd. (conclusion) (hypothesis)

Proof know-how: To prove an implication...

- ✓ 1. Assume that its hypothesis is true.2. Show that its conclusion is true.

Proof: Assume that n is an odd integer.

Then n = 2K + 1 for some integer K. Hence $n^2 = (2K + 1)(2K + 1) = 4K^2 + 4K + 1 = 2(2K^2 + 2K) + 1$,

Thus, n^2 is odd.

Where $2K^2 + 2K$ is an integer.

Problems #2 and #3

2. **Prove:** If n is an integer, then $n^2 + n$ is even.

Proof: Use proof by cases. (See reading.)

3. **Prove:** If n^2 is odd, then n is odd. (Here, n is an integer.)

Proof: Assume that no is odd.

Then $n^2 = 2K + 1$ for some integer K.

Hence
$$n = \sqrt{2k+1}$$
 ??

Thus, n is odd.

Problem #1: Which of these are true?

- (a) If I live in Tokyo, then I live in Japan.
- (b) If I live in Japan, then I live in Tokyo.
- (c) If I don't live in Tokyo, then I don't live in Japan.
- (d) If I don't live in Japan, then I don't live in Tokyo. \top

For simplicity...

- \bullet Let T be "I live in Tokyo."
- \bullet Let J be "I live in Japan."

Then...

- (a) says: If T, then J.
- (d) says: If not J, then not T.

So what? Well...

- Implications (a) and (d) are contrapositives of each other. (Ditto for (b) and (c).)
- **Key:** Contrapositives are *equivalent*.

Contrapositive

- We had to prove: If n^2 is odd, then n is odd.
- But it's hard to prove this implication directly.
- Instead, we can prove its contrapositive, namely...

even

 \star If n is not odd, then n^2 is not odd.

Proof know-how:

Proving "If p, then q" is the same as proving the contrapositive "If not q, then not p."